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Abstract—We present Diana, an embodied agent who is aware
of her own virtual space and the physical space around her. Using
video and depth sensors, Diana attends to the user’s gestures,
body language, gaze and (soon) facial expressions as well as their
words. Diana also gestures and emotes in addition to speaking,
and exists in a 3D virtual world that the user can see. This
produces symmetric and shared perception, in the sense that
Diana can see the user, the user can see Diana, and both can see
the virtual world. The result is an embodied agent that begins
to develop the conceit that the user is interacting with a peer
rather than a program.

I. INTRODUCTION

Complex computer systems are becoming a more prominent

fixture in our everyday lives. To make using these systems

easier, agents have begun to emerge that give complex systems

more human-like interfaces. Apple’s Siri and Amazon’s Alexa

are commercial examples of agents that help users interface

to complex systems, including but not limited to the internet.

Siri and Alexa are examples of conversational agents (CAs)

that users can talk to and hear. These systems, while popular,

often leave users frustrated and disappointed in the agent’s

capabilities [1]. In essence, users want them to be able to do

what people can. As a simple example of where conversational

agents fail, ask Siri or Alexa “what am I pointing at?”

With this in mind, many researchers have turned to embod-

iment in order to better meet user expectations1. Embodied

conversational agents (ECAs) or avatars add new dimensions

to human/agent interactions compared to voice- or text-only

conversational agents. Embodied agents can express emo-

tions and perform gestures, two crucial non-verbal modes

of human communication. Potentially, this enables ECAs to

have more human-like, peer-to-peer interactions with users.

Unfortunately, embodiment alone does not avoid some of the

key limitations of conversational agents. Even embedded in an

avatar, most agents won’t know what you are pointing at. Like

verbal conversations, visual communication mechanisms like

gestures, expressions, and body language need to be two-way.

1See Section II for additional discussion

This paper presents Diana, an embodied agent (EA) who is

aware not only of her own virtual space but of the physical

space around her. As an avatar, Diana can speak, gesture,

and emote. More importantly, however, Diana has inexpensive

video and depth sensors that let her sense the physical world

around her, including the user. Diana observes the user, and

knows when they are attending to her, as opposed to doing

something else. She can observe the user’s emotions, and most

importantly she can understand the user’s gestures. As a result,

visual communication joins verbal communication as a two-

way process.

Diana herself is embedded in a virtual world that the user

can also see. In the prototype described below, the objects are

simple things like blocks and cups. What is important is that

both Diana and the user can see them. Shared perception is

a critical component of human communication. When people

work together on a physical task, they can see what each other

are doing and don’t have to describe all their actions. Similarly,

when Diana moves a (virtual) block, she doesn’t have to tell

the user, the user can see it. This simplifies communication

and makes it more natural. It also enables visually grounded
reasoning, where the feasibility of actions is determined by the

visualization/simulation of the action in the 3D environment

perceived by both the person and the agent.

Diana is therefore more than an embodied conversational

agent. She combines embodiment (i.e. an avatar) with visual

perception to create a two-way conversational and visual agent.

By being situated in a displayed visual world, she and the

user also share perception. The combination results in an

interface that feels qualitatively new. Even though the user

knows that Diana is an artificial agent—and her avatar need

not be particularly life-like—she has enough capabilities to

establish the conceit that the user is interacting with a peer.

II. LITERATURE REVIEW

This paper builds on [2] to explore multi-modal, peer-to-

peer communication between people and avatars in shared

perceptual domains. Logically, our work here relates to many

topics which have been well-studied, including human/avatar
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interaction, embodied conversational agents, peer-to-peer com-

munication, multi-modal interfaces, and semantics for reason-

ing in simulated environments.

It is well understood that people respond differently to

embodied avatars then to non-embodied assistants [3], even

performing better at certain tasks when embodied avatars are

employed [4]. Users of avatars tend to take a more positive

attitude, even attempting to make themselves appear better to

the avatar, and they often assign the avatar a personality [5].

This motivates much of our work with Diana; however, there

are downsides. When an avatar is not able to meet a user’s

goals as a human would, the user tends to get angry [6].

Anecdotally, as in [1], users of our system have described

frustration when learning what Diana can and can’t do, and

especially when she doesn’t recognize their communication

properly. Additionally, while users may respond better to

avatars than to non-embodied assistants, they respond better

still to physically present robots [7]. While practical limitations

preclude our presenting a system using a real robot, we

expect much of what we are learning about embodied agents

using sight, speech, gesture, physical manipulation, and shared

perception to transfer to human-robot communication.

Indeed, considering both embodied virtual agents and real

robots, evidence highlighting the benefits of multi-modal inter-

faces relative to speech-only approaches is easy to find. From

cognitive psychology, we know that people tend to process

speech and gesture somewhat independently, allowing humans

using multi-modal systems to access greater working memory

with less cognitive load than when using speech alone [8].

Combining language and gesture in computer interfaces is

nothing new, first introduced by Bolt’s “Put-that-there” [9].

Since then, many have followed suit as surveyed in [10]–[12].

What’s more, multi-modal interfaces may offer additional

practical advantages, as summarized by Reeves et al. [13].

Noisy or dark environments and settings where security or

privacy is of importance are examples of circumstances in

which having only a single mode of communication may

be problematic. Further, Veinott et al. show that non-native

English speakers benefit from video in English-language ne-

gotiation scenarios [14].

Sharing visual information has been shown to be par-

ticularly useful for establishing common ground [15]–[17].

Indeed, others have emphasized the importance of video and

shared visual workspaces in computer-mediated communica-

tion, also highlighting the usefulness of non-verbal commu-

nication between humans [18]–[21]. This reinforces the need

to provide a multi-modal interface to better encourage true

peer-to-peer interactions.

The embodied conversational agent (ECA) [22] has log-

ically risen as a combination of dialog-based systems and

virtual avatars. There are many examples of ECAs, although

we know of no previous systems which integrate embodied

agents, two-way visual communication and shared percep-

tion. One such prominent example is the virtual classroom

environment introduced by Barmaki et al. which was shown

to be useful in studying the positive effects of non-verbal

Fig. 1: System layout

communication by teachers [23]. Their setup is similar to ours,

with a Microsoft Kinect atop a large display watching for

gestures. However, their agents are human-orchestrated, and

the task is not facilitated with shared perception.

Similarly in Carnell et al., a teaching and evaluation tool

for doctors is presented [24]. In their work, virtual patients are

hand-designed to provide a realistic doctor-patient interview,

with successful prediction of real world medical domain

performance. Perhaps most similar to our work, Mell et al.

present a competition of automated negotiating agents with

naive users [25]. These agents use emotion, deception, humor,

and opponent modeling to attempt to win the most points

in a negotiation game. While there are aspects of multi-

modal communication and shared perception, these agents are

fundamentally adversarial rather than cooperative and lack

shared perception.

The work we are presenting here builds upon that presented

by Narayana et al. [2]. As part of that earlier work, gesture

elicitation studies were conducted in a peer-to-peer shared-

perceptual environment. This step was key to us establishing

how people expect other people to behave in the context of a

shared task; typically that of building structures from blocks.

The semantic gestures commonly used by people to solve

problems are those employed here by our embodied agent,

Diana.

III. DIANA: AN EMBODIED AGENT

The best way to understand the impact of adding two-way

visual communication and shared perception to an embodied

agent is to walk up to Diana’s table and interact with her, as

in Figure 1. This section describes typical user interactions.

The figures are taken from one of two videos of users with

Diana included with the supplemental materials23.

Users of our prototype system stand at one end of a table,

as shown in Figure 1. A large monitor at the other end shows

a virtual continuation of the table, with Diana standing at the

end of it. The virtual half of the table has (virtual) blocks on it,

and the user’s task is to direct Diana to build block structures.

This setup is unique because it is multi-modal and sym-

metric. As with conversational agents, Diana can both hear

2 Video #1: http://cs.colostate.edu/∼vision/hcc19/video1.mp4
3 Video #2: http://cs.colostate.edu/∼vision/hcc19/video2.mp4
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Fig. 2: Demonstration of signaler pointing.

and speak to the user. Unlike conversational agents, though,

Diana can see the user and respond to the user’s gestures, body

language, and gaze4. She is aware of the user’s presence in a

way that conversational agents aren’t. The user, of course, can

also see Diana. And, since she is an avatar, she also gestures

and directs her gaze. Perhaps most importantly, both the user

and Diana can see the virtual blocks on the table, leading to

shared perception. When Diana stacks the red block on the

green block, she doesn’t have to say what she is doing, the

user can see what she is doing.

It is hard to overstate the importance of this second channel

of communication. Contextual awareness is a general problem

for embodied agents, and the introduction of a shared task

space in which both person and computer can see each

other and the physical manifestation of their shared attention

profoundly expedites communication. It also necessitates new

ways of formulating integrated speech, gesture, and visual

human computer interaction.

As already alluded to above in our mention of elicitation

studies, we have modeled Diana’s behavior to the greatest

extent possible after the results of human subject studies in

which one person directs another to build block structures [2].

One observation from these studies was that users often wait

to approach the table while they are planning how to build

the block structure. At this point they stand back from the

table and do not look at their partner on the other side. When

they have a plan and are ready to begin, they step up to the

table and look at their partner, who looks back. There is then

an exchange of signals to confirm the start of the task. These

signals can either be verbal (e.g. “ready?”, “yes”) or gestural

(e.g. hand waves).

Interactions with Diana begin in roughly the same way.

When the user steps up to the table and looks at Diana, in

response Diana directs her attention, her gaze, back at the user.

The user then waves to Diana, and Diana waves back while

saying that she is ready. The user can then proceed with the

task, knowing that Diana is watching and listening to them,

and is ready to respond.

What happens next depends on the user and the block

structure they want to build. Often, the next step is to reference

a particular block that the user wants Diana to pick up or

slide. In a multi-modal system, there are many ways to select

4In the near future, Diana will also respond to facial expressions.

a block. Verbally, Diana allows a block to be identified by

its properties (e.g. “red block”) or its location (“block on

the left”). More often, however, users choose to point at the

desired block (see Figure 2). Objectively, pointing is easier

when there are many blocks on the table with similar proper-

ties, since verbal descriptions can quickly become complex

and cumbersome: e.g. “The yellow block on the right of

the table left of a green block and behind another yellow

block.” Interestingly, though, users prefer to point even when

there are only a few uniquely colored blocks on the table. In

practice, deixis 5 seems to be the preferred mode of reference

in contexts with shared perception.
While pointing is a simple gesture for a person, it can

be imprecise. For example, if two or more blocks are close

together, Diana may be uncertain which block the user is

pointing at. This is where the back and forth of a peer-to-peer

dialog comes in. If the user points and Diana is unsure which

block is being referenced, she starts asking the user questions.

For example, she might ask “Do you mean the red block?”

while gesturing toward that block. If the user says “yes” (or

nods, or gives a thumbs up signal), the ambiguity is resolved.

Otherwise Diana asks about the next most likely block until

the ambiguity is resolved. If there are too many options, the

user can interrupt by saying “nevermind”.
Deixis is also the preferred mode of referencing locations.

If the user wants Diana to move a block to an empty spot on

the table, they can point at it, while perhaps saying something

general like “put it there”. In this case, the imprecision of

pointing may mean that the block gets placed near but not

exactly at the desired location. In this case, the easiest thing

for the user to do is correct the error by having Diana

slide the block a little, but the amount has to be carefully

controlled. This can be done verbally (“slide to the left...a

little more... little more... stop”), but again gestures appear to

be the preferred mode, as shown in video #1.
Although gestures are the preferred mode for referencing

visual objects and certain types of positions, the role of

language in our multi-modal system should not be under-

estimated. Although numbers can be indicated gesturally by

raising the appropriate number of fingers, users far prefer to

say the words “one”, “two”, etc. More significantly, requests

for actions are more often spoken than gestured, even though

mimic-like gestures exist. This may be because there are a

small number of well-defined actions in this domain, like grab,

slide and pick up. (In human subject studies, the verb “rotate”

was often accompanied by a gesture, perhaps to convey the

axis of rotation.) It may also be that the greater ambiguity of

language is useful. Users often say something like “put the

red block next to the green one”. This statement doesn’t say

how the block should be moved, for instance should it be slid

or carried, because the user doesn’t care. They just want the

red block next to the green one.
Language is also useful for sequencing, because of its ability

5From a practical perspective the term “deixis” is used here as a synonym
for pointing, but our use of the term reflects a deep connection with
disambiguation in the context of language understanding.
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to make references across sentences. For example, users might

say “Slide the red block forward. Now put the blue one next

to it”. In this case, “it” is a reference to the red block. This is

hard to do with gestures. After sliding the red block, the user

has to point to the blue one and then back to the red one to

have the same effect. Interestingly, in our system references

are often cross-modal. A user can say “put this there”, while

using deixis (pointing) to indicate “this” and “there”.

Once a person is engaged with Diana, a wide array of

interactions arise drawing upon different combinations of

speech and gestures, not to mention the goals naive users

bring to each interaction. Since versions of the Diana sys-

tem are up and running at all three partner institutions, i.e.

Colorado State, Brandeis and Florida, hundreds of subjects

have been introduced to, and allowed to play with, Diana.

These sessions include both highly structured user studies and

more informal sessions with visitors. From these interactions

we’ve observed some broad trends. Perhaps most important,

the majority of naive users intuitively understand the system

well enough to successfully build structures: towers, staircases,

or sometimes more imaginative structures. That naive users

are able to successfully build structures shows us that task

focused communication with an embodied agent capable of

shared perception is both engaging and useful.

Another trend concerns how different users blend speech

and gesture. As Diana understands sentences such as “Place

the purple block on the red block”, some users quickly grav-

itate toward a language-dominant mode of communication.

At the other extreme, Diana is able to interpret over 30

distinct gestures and some users rely almost exclusively upon

gesture. This ability for users to have the system adapt to their

favored mode of interaction is itself huge. For one thing, it

supports the intuition that not all users seek the same modes

of interaction. It will allow us in the near future to begin

quantifying differences in users’ preferences.

Figure 3 provides a quick visual introduction to the different

gestures used by a person and the actions of Diana. The person

may be seen waving in greeting, pointing, indicating a block

should be slid over, that a block should be grasped, and finally

a thumbs up acknowledging successful completion of the

staircase. Diana is shown waving in greeting, acknowledging

understanding of the slide gesture, preparing to grasp a block,

placing blocks, and finally with the hand over the white block

suggesting understanding that the white block is the one that

the user wants moved. The purple dashed circle is the only

aspect of this entire interaction not readily reproduced with a

real robot; it shows in real time where Diana thinks the user

is pointing.

So far our examples concern blocks world, but clearly

solving tasks in other spatial domains is key to understanding

embodied agents with shared perception. A second domain

is illustrated in Figure 4. This table setting domain currently

includes plates, knives and cups. Objects such as these in-

troduce new challenges because there is an arguably richer

set of implied semantics along with more specialized ways

to interact with these objects. For example, Diana can grab

a cup from above with her fingers around the rim, like she

grabs a block. This is fine for picking up a cup, but bad if the

goal is to hold the cup to pour something into it, since in this

position her hand covers the opening. For pouring, holding the

cup by the side or the handle is better. Diana has a model for

how to interact with objects based on affordances. The best

way to grab the cup is determined by what you (most likely)

intend to do with it. However, this specialization calls out for

the need to teach Diana new grab gestures. Currently users

can teach Diana new gestures online, and Diana will associate

the new gesture with the particular grasp (see video #2).

Technical details about one-shot gesture learning can be found

in Yu [26]. See Figure 4 for examples of object affordances

for which new gestures must be learned.

IV. SYSTEM DESIGN

Underneath the hood, Diana is a complex combination of

independent processes. The processes involved in recognizing

gestures, body position, and gaze are shown in Figure 5. A host

process drives a Kinect sensor and uses its pose determination

(a.k.a. skeleton) feature to determine the position of the user’s

body, left hand, right hand, and head. It produces four data

streams: three RGB-D video streams focused on the left hand,

right hand, and head, and a pose stream of joint position data.

Convolutional neural nets (CNNs) analyze the video streams

for poses and motions consistent with known gestures [27]–

[29], while a Long-Short Term Memory (LSTM) network

analyses the pose stream for arm motions. The head stream

is also used to analyze emotions and gaze. Finally, a state-

machine-based fusion process collects the per-frame labels

from all four streams to recognize gestures and significant

body language (e.g., stepping toward or away from the table).

VoxSim [30], [31], the oval in the upper right of Figure 5,

is the visual semantic reasoning engine containing Diana’s

virtual world. Among other components, it contains a language

model for processing/parsing verbal input, a nondeterministic

push-down automaton architecture for tracking the visual,

situational, and dialogue context available to both Diana and

her interlocutor, and a semantic model of objects and events

built on the VoxML modeling language [32] which extends

the semantic typing structure of Pustejovsky’s Generative

Lexicon theory [33]. This semantic model grounds object and

event affordances to the particulars of the current situation

throughout an interaction with Diana, and judges the feasibility

and plausibility of potential actions based on affordances and

the ability of an action to be successfully simulated.

V. SIGNIFICANCE AND DESIGN IMPLICATIONS

As mentioned in the literature survey, there are many ECAs

with capabilities that overlap Diana’s capabilities. What sets

Diana apart from other state-of-the-art ECAs is her ability

to facilitate peer-to-peer communication. Diana is aware of

the physical world (i.e. the human user’s speech, gestures,

gaze, and emotion), the visually-shared virtual world, and her

own gestures and emotions. Diana suggests how future agents

need to develop, including the need for physical embodiment,
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Fig. 3: Sample snapshots of both the user and Diana during a single session.

Fig. 4: Examples of non-standard object affordances

CwC Windows
Machine

Kinect Host
Segmentation
GUI

Unix Host + GPU

Right Hand Pose
Unix Host + GPU

Left Hand Pose
Unix Host + GPU

Head Motion
Unix Host + GPU

Arm Motion

Unix Machine

Gesture Fusion

VoxSim

Fig. 5: System Design with multiple GPUs

visual as well as audio (speech) communication, and shared

perception of elements in both physical and virtual reality.

Down this path of agent development lie agents able to support

the conceit that we are interacting with another human, or at

least with an agent with human-like capabilities.

By design this paper focuses on what Diana as an Agent

does, leaving aside technical descriptions of her implementa-

tion. Technical descriptions of her components appear else-

where [2], [27]–[36]. However, there are a few aspects of the

Diana system we wish to briefly highlight.

• Elicitation: Diana’s behavior was modeled after the

results of an observational study of human-to-human

communication. Basing Diana’s actions on huma studies

supports the conceit that Diana is person-like.

• Gesture Recognition: Real-time gesture recognition is

now feasible using banks of Convolutional Neural Net-

works (CNNs). It is well understood that the user expe-

rience degrades with as little as a 50ms delay [37] and

that perceptible latency dramatically reduces human sat-

isfaction [38], [39], but CNN technology allows gesture

recognition within these constraints. Gesture recognition

in turn re-enforces the conceit that Diana is seeing and

responding as a person might.

• Shared Perception: When working on shared tasks, an

important part of the dialog is what doesn’t have to be

said because both participants can see the work space.

The fact that both Diana and the user can see the shared

virtual world is critical to her success.
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VI. CONCLUSION

We present Diana, an embodied agent. Diana is able to see

the user’s environment, understand her own environment, and

manage the overlap of the virtual and real worlds. In the broad

quest to humanize computing, few avenues of development are

likely to prove more important in the long run than embodied

agents that can see their users and display their virtual world

to their users. User awareness and shared perception human-

ize our interactions with computers by successfully enabling

people to interact with an avatar as if they were a person. In

the near future, we predict people will come to expect agents

to watch them, listen to them, and understand their shared

surroundings.
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