
CircGR: Interactive Multi-Touch Gesture Recognition using
Circular Measurements

Ruben Balcazar
rbalc001@fiu.edu

Francisco R. Ortega
fortega@cs.fiu.edu

Katherine Tarre
ktarr007@fiu.edu

Armando Barreto
barratoa@fiu.edu

Mark Weiss
weiss@cs.fiu.edu

Naphtali D. Rishe
ndr@acm.org

School of Computing and Information Sciences
Florida International University

Miami, FL 33199

ABSTRACT
CircGR is a multi-touch non-symbolic gesture recognition
algorithm, which utilizes circular statistic measures to im-
plement linearithmic (O

(
n log n

)
) template-based matching.

CircGR provides a solution to gesture designers, which al-
lows for building complex multi-touch gestures with high-
confidence accuracy. We demonstrated the algorithm and de-
scribed a user study with 60 subjects and over 12,000 gestures
collected for an original gesture set of 36. The accuracy is
over 99% with the Matthews correlation coefficient of 0.95.
In addition, early gesture detection was successful in CircGR
as well.

Author Keywords
multi-touch; gesture recognition; template matching

ACM Classification Keywords
H.5.2. User Interfaces: Input Devices and Strategies

INTRODUCTION
Multi-touch has become pervasive since the introduction of
the iPhone in 2007. In the past few years, more notebooks
(e.g., Microsoft Surface) and tablets (e.g., iPad) have begun
to take off with multi-touch as one of the input modalities.
Users have already internalized some multi-touch gestures
[24]. However, when going beyond the simple pinch, swipe,
and rotate gestures, there is still a need for a generalized (non
ad-hoc) interactive gesture recognizer that is responsive and
easy to implement. We provide a solution, named CircGR.

CircGR is an interactive template-based recognition algo-
rithm, which uses circular design primarily for non-symbolic
gestures (e.g., rotate is a non-symbolic gesture, versus the let-
ter A). Our algorithm, tested with 60 subjects with a set of 36

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISS’17, October 17–20, 2017, Brighton, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-4691-7/17/10$15.00.
https://doi.org/10.1145/3132272.3134139

gestures (for a total of 12960 gestures collected), yielded an
accuracy (ACC) of 99% and Matthews correlation coefficient
(MCC) of 0.95. One of the main features of our algorithm
is the ability for early detection by classifying while the ges-
tures are in progress.

Motivation: Yet Another Multi-Touch Classifier?
The ubiquitous state of multi-touch surfaces may prompt
the false assumption that multi-touch gesture recognition is
a solved problem; however, challenges still exist. One of
the challenges is incorporating early detection of multi-touch
gesture with interactive systems and detection using template-
based matching. One of the advantages of template-based
matching is that it doesn’t require large training sets (one tem-
plate per gesture is sufficient). For a system that requires mul-
tiple gestures (without using ad-hoc methods), a highly re-
sponsive interactive recognizer with high-accuracy is needed.
Our proposed method addresses this particular research prob-
lem.

When working towards an interactive multi-touch classifier,
we tried different methods, including the extension of known
recognizers (listed in the Related Work Section), and we
started looking at Circular Statistics. While we didn’t use the
typical circular statistical models, we looked at the methods
used in circular statistics, and noticed that we could repre-
sent the gestures through circular measurements. One of the
reason for this occurrence is the angularity of some gestures.

Contributions
CircGR is a novel way to recognize non-symbolic gestures
for interactive (i.e., real-time: the output of the overall se-
quence of processes appears to be generated without any ap-
preciable delay with respect to the overall input) systems us-
ing circular measures as a way to represent gesture templates.
The contributions detailed in this paper include: (1) demon-
stration of a linearithmic algorithm for multi-touch detection
with a high recognition accuracy (ACC = 99% and MCC =
0.95); (2) demonstration of early-detection of gestures (with-
out the need for gesture completion) with ACC=99% and
MCC = 86% for the first window (64 points); (3) demon-
stration of the need for only one user or developer-provided

12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3132272.3134139&domain=pdf&date_stamp=2017-10-17

training sample per template; and (4) a 60-subject experi-
ment with over 12,000 gestures collected for a gesture set of
36. The novelty of CircGR is the simplicity seen in previ-
ous Dollar ($) family algorithms, coupled with an improved
running time and the ability to recognize a wide variety of
non-symbolic gestures for multi-touch displays. As with the
$ Family, CircGR provides the ability of gesture designers
to create gestures by example and quickly prototype gesture
sets.

Note that CircGR can run in linear time if sorting is not used
during the classification, with minimal decrease in accuracy.
Finally, we provide information on how to obtain our source
code and data repository in our supplemental material (see
http://CircGr.com), as well as additional algorithm listings.
The algorithms are listed in the appendix, part of the supple-
mentary material.

RELATED WORK
Gesture recognition approaches fall into two main categories:
formal gesture definition languages and specification via
examples [9]. Formal gesture definition languages define
gestures for specific domains [18], using dialects such as
XML [1, 23], JSON [12], regular expressions [20, 19], log-
ical rules [30, 27, 15], and semiotics [17]. Gesture recogni-
tion proceeds from formal languages by verifying that input
matches declared definitions. Formal languages allow broad
expression of potentially unlimited types of gestures, but suf-
fer from either sensitivity or specificity issues. A gesture out-
side of a definition will not be considered as part of that defi-
nition regardless of how close it is, which can be problematic
when the expression of a certain gesture varies by user (an
issue of sensitivity). This definition can be ”loosened” to in-
clude variation, but then might incorrectly include other ges-
tures (an issue of specificity). To overcome these hurdles and
ensure good classification, the burden of defining a mutually
exclusive gesture set (i.e. each gesture is uniquely different
from the others) as well as creating gesture definitions that
strike the right balance of sensitivity and specificity, falls on
the developer. Furthermore, there is no inherent priority or
measure of rank when an input gesture meets the definition
of multiple gestures. Ad-hoc solutions are usually offered by
each system to address this limitation.

For example, gesture representation in Proton [20] and Pro-
ton++ [19] revolve around a stream of gesture events encoded
in the form of a string of symbols consisting of three proper-
ties: the type of action, the identification of the trace, and the
trace’s target object. The set of all symbol permutations forms
a language, and each gesture is then a regular expression de-
noting a subset of that language, which allows the input to be
classified by testing whether it is a part of that subset. Am-
biguities must be resolved by either refining the definition or
via an ad-hoc score function – again – placing the burden on
developers to ensure proper functionality. The work by Pro-
ton and Proton++ presents an innovative avenue in gesture
recognition and specification via regular expressions, but we
believe that this approach increments the complexity of ges-
ture set design.

Specification via examples involves building classifiers from
a training set of gestures. Often, these methods involve fea-
ture extraction to reduce the gesture to a specific feature space
or derive a statistical model capable of classification. Popular
methods include Hidden Markov Models (HMM) [11, 31],
statistical approaches [29, 28], finite state machine (FSM)
generation [14, 21], dynamic programing [22, 37], Petri
nets [32], Bayesian networks [35], fuzzy logic [8], Neural
Networks (NN) [5, 25], and nearest-neighbor approaches [36,
4, 3, 34]. Specification approaches are most commonly lim-
ited by the need to collect training data. Classifiers based
on statistical models that require training (e.g., HMM,FSM,
NN, Fuzzy Logic) require numerous examples of each ges-
ture. HMM-based model by Dittmar et al. achieved good
performance utilizing 120 examples over 6 gestures to train
the model [11]. Furthermore, a statistical approach such as
Rubine’s classifier [28], or Schmidt and Weber’s template
matcher [29] require feature engineering, which ultimately
has trouble separating gestures across features that are not
linearly separable. Bayesian networks, fuzzy logic, and Petri
nets also require a degree of expert knowledge that make
such systems suitable in the domain of that expert knowledge.
Nearest-neighbor is simple to understand and implement but
also requires quantization via features as it is often unfeasible
to utilize the full breadth of gesture data as input.

Template-based approaches employ nearest-neighbor-like
methods to classify input as the ”closest” template via a dis-
tance metric. The $-family are particularly notable template
based matchers, supporting multiple strokes and featuring ro-
tational invariance without the need for large datasets or very
specific domain knowledge [36, 4, 3, 34]. While the $-family
rely on distances between re-sampled and superimposed ges-
tures as a measure of similarity, a very direct nearest-neighbor
approach, their approach is focused on supporting single or
multi-stroke interaction rather than our approach, that focuses
on multi-touch interaction. Other template matchers utilize a
combination of statistical models to define the distance met-
ric [29, 28] as a hybrid approach. Template matchers often re-
quire additional preprocessing of input to minimize template-
input gesture differences due to scale and rotation, incurring
additional processing time.

Regardless of approach, multi-touch gestures themselves can
be of symbolic or non-symbolic nature. Symbolic gestures
include the articulation of alphanumeric characters or sym-
bols (e.g., ←, θ, �) with a meaning, while non-symbolic
gestures express movement and action (e.g., swipe, pinch,
double-tapping). The type of gesture involved affects both
domain and recognition. Symbolic gestures are suitable as
activators to some functionality (e.g., drawing ”S” to save a
document) therefore, recognition occurs after the execution
of the gesture. Non-symbolic gestures have no predefined
end-point, and are more suited for interactive or manipulative
tasks (e.g., using pinch to zoom) which must occur during
gesture execution with recognition occurring in parallel.

CircGR is a non-symbolic template based matcher that rep-
resents gestures as a set of circular measures generated from
touch data. Input is converted to circular measures and recog-

13

http://CircGr.com

nition is performed on these measures as the gesture is being
performed. Circular measures are descriptive statistics uti-
lized in directional statistics. Circular statistics are involved
in the analysis of circular data such as direction, time, and
their distributions. Circular data usage in gesture recognition
has largely been focused on HMM or probabilistic models
using the von Mises distribution in domains such as sign lan-
guage recognition [33], hand drawn gestures [6], and action
recognition [7].

CIRCULAR MEASURES
Circular statistics is primarily focused on data that represents
time, direction, and orientation. These measures have no par-
ticular sense of ”magnitude”. Therefore, they can be repre-
sented by unit vectors. A set of such vectors in 2-dimensional
space lie on the surface of a unit circle and are thus circular
data. Further information on circular data and its statistical
usage can be found in [16]. Below we denote the basic mea-
sures that are in use by CircGR.

A circular observation α consists of a polar angle α ∈ [0, 2π)
which represents a 2-dimensional unit vector. In other words,
it is a polar coordinate (1, α). It is trivial to convert such
a vector between its polar angle representation and its rect-
angular coordinates. A set of angles A = α1, α2, . . . , αN
has a mean resultant vector R represented by polar coor-
dinate (||R||, αR), where ||R|| =

√
C2 + S2 and αR =

atan2(S,C). The values S and C are the sum of the sine
of all angles and the cosine of all angles, respectively. The
circular distance d between two observations α and β, is the
smallest arc length between them and can be directly calcu-
lated via equation dC(α, β) = π − |π − |α− β||.

Why Circular Measures?
Template matching algorithms typically preprocess input to
maximize classification performance. Preprocessing can in-
clude resampling, scaling, rotation, and translations of in-
put, as well as additional technique-specific transformations.
These are usually applied in a sequential manner, which
means that points are iterated over multiple times. Mod-
ern improvements in template matchers often come in the
form of additional preprocessing steps. For example, Rekik
et al. introduced Match-Up, a simple clustering preprocess-
ing technique with two steps that is invariant to how users
articulate multi-touch gestures [26]. Match-Up, paired with
$P [34], significantly increased recognition over several ges-
tures when articulated with multiple fingers compared to $P.
However, each preprocessing step added to the algorithm pro-
duces more runtime overhead, leading to slower classifica-
tions.

Circular measures are just a series of angles along with their
descriptive statistics (e.g., mean, resultant vector). A series
of angles can be used to represent any given geometric curve
by segmenting the curve into equal-length vectors [13] and
such representation has been used as an input technique for
magnetized styluses [2]. In CircGR, input traces are con-
verted to series of angles to be used explicitly for recogni-
tion, which has several important consequences: (1) because
a trace is just a series of angles in this representation, there

is no need for translation or scaling, (2) rotation can easily
be done by increasing each angle by the desired rotation an-
gle in the moment that they are calculated (however, as we
are not aiming to be rotation invariant, this is not done), (3)
resampling, which is very common in template-matching ap-
proaches to make input comparable to stored templates, natu-
rally segments an input trace into a series of equal-length vec-
tors, meaning that this preprocessing step is all that is needed
to generate the angles, and (4) each angle is treated by Cir-
cGR as a polar angle to a unit vector, which makes distance
calculation very simple arithmetic. Furthermore, using this
circular framework lends itself to additional notions such as
representing temporal sequence of gesture events over the in-
put interval where each event is a label that is easily derived
from the angles themselves during resampling. These labels
facilitate classification without additional preprocessing.

CircGR: GESTURE REPRESENTATION
CircGR uses standard definition of a multi-touch gestures;
they begin when the first finger contacts the screen and end
when the last finger ceases contact with the screen. Each fin-
ger produces a series of 2D points called a trace. Gestures
can have an arbitrary amount of traces. Traces belonging to
fingers that are not moving during the gestures are referred to
as anchors. CircGR detects anchors automatically and cre-
ates a single point, the centroid of all the points in that trace,
to represent that anchor. From this point on, we will use the
word ”traces” to refer to traces that are explicitly not anchors.

CircGR defines the center point, pC of the gesture depending
on the presence of anchors. If there are anchors present, the
center of the gesture is the centroid of all anchors. If there
are no anchors present, then the center is the centroid of the
first point in each trace. Anchors, by extension, also represent
traces with very few points, such as taps; hence a two finger
tap can be expressed as a gesture with two anchors and no
traces.

A CircGR gesture is two sets of n angles S = {αSi |i =
1..n} and T = {αTi |i = 1..n} that represent spatial and
temporal properties, respectively. The angles are derived
from input traces consisting of a set of points P = {pi =
(xip, y

i
p, id

i
p, t

i
p)|i = 1..N}, where id is stroke ID, and t is the

timestamp. Additional data includes the number of anchors
and traces, which add up to number of fingers.

The process of calculating the spatial angles of S is illus-
trated in Figure 1. Gesture resampling allows input gestures
to have the same amount of points as their template coun-
terpart, simplifying template comparison. The resampling
process was adapted from the one specified in [36], which
involves recreating a trace to have a fixed amount of inter-
polated points, referred to as sampling resolution. The sam-
pling resolution used for CircGR was 64 points for all tests.
Resampling a trace requires its length, which is divided by
sampling resolution, to give an interval length. If the in-
terval length is less than a limit ι, the trace is considered
an anchor, is not re-sampled, and contributes to the center
of the gesture. Empirical observation yielded that the value
of ι = 0.5 pixels was a good minimum interval length of

14

a moving trace in our environment. As the points are in-
terpolated for each trace, each angle αSi is calculated be-
tween every two interpolated points pi and pi−1 in a trace
as αSi = atan2(pi.x−pi−1.x, pi.y−pi−1.y), and adding 2π
if αSi < 0.

Temporal angle αTi calculation immediately follows αSi cal-
culation during resampling, thus, there is an angle in T for
every angle in S (i.e. |T | = |S|). The timestamp of the first
and last points of the gesture determine the start time ts and
end time tf of that gesture and its duration ∆G = tf − ts.
The timestamp of interpolated points pi.t is used to gener-
ate αTi as shown in Equation 1. Interpolated points inherit
the timestamp of the input point used to interpolate them. As
each angle is calculated, the resultant vector for the gesture is
also calculated, both for overall and each label.

αTi =
pi.t− ts

∆G
× 2π (1)

Labels
Each angle, spatial or temporal, is assigned 3 labels: a prop-
agation label, a centripetal label, and a clock label. Tempo-
ral angles αTi inherit all the labels assigned to spatial angle
αSi . Propagation labels consist of 8 directions that are based
on the cardinal and intercardinal directions as shown in Fig-
ure 2. The value of αS and where the location of it falls
determines the propagation label. A buffer called the ”di-
rectional margin” is defined around each axis direction by
Θ ∈ [0, π4], as shown by the dotted lines in Figure 2. Un-
der this format, αS classified as “Down(D)” if it belongs to
the set {αS |(π2 −Θ) ≤ αS ≤ (π2 +Θ)} assuming the radians
increase clockwise1 from direction R as 0 rad. The direction
designated as 0 rad is arbitrary as long as it’s consistent and
Θ values larger than π

4 are undefined. All testing for CircGR
was done with Θ = π

18 rad which yielded good results.

The centripetal labels consist of two directions: I (in) and O
(out) and are assigned relative Euclidean distance, dE(p, q)
to the gesture’s center point pC . Given two points pi and
pi−1 that generated αSi , I is assigned to αSi if dE(pi, pC) ≤
dE(pi−1, pC); O otherwise.

Clock labels are assigned to αSi relative to the previous an-
gle αSi−1: CW (clockwise) and CCW (counter-clockwise).
Clockwise label is assigned to αSi if tracing the smallest arc
from αSi−1 to αSi results in clockwise movement; the reverse
would yield CCW. Depending on the chosen orientation, one
label is assigned if αSi−1 < αSi ≤ (αSi−1 + π) and the other
label otherwise. Care has to be taken when (αSi−1 +π) > 2π.

Labels are a simplified form of definition elements typically
found in gesture definition languages. GeForMT, for exam-
ple, utilizes labels such propagation(referred to as ”direction”
in that work) and clock (refereed to as ”rotation”) as grammar
elements to define a given gesture [17]. However, GeForMT

1The inversion from the typical counter-clockwise orientation is due
to touch-screens usually setting the origin at the upper left corner
with the positive y-axis pointing downward.

is a formalization which requires an implementation that sup-
ports the identification of these elements as well as other nu-
merous elements of its grammar. CircGR utilizes labels for
simple-to-implement and fast clustering of angles in order to
facilitate comparison during classification as well as repre-
sent temporal features in gestures without requiring further
interpretation by a syntax engine.

(a) Re-sampled
Trace.

α
1

α
2

α
3

(b) Spatial Angles.

Figure 1. Spatial Observation Generation.

URUL

DRDL

U

D

L
R2Θ

Θ

Figure 2. The 8 Propagation Labels.

Input Capturing
CircGR receives input gesture as a series of traces. How the
traces are generated and sent to CircGR can vary. In our ap-
proach, a variable defines the minimum amount of points n
collected before classification. The number of fingers influ-
ence the amount of points generated by the hardware during
an interval, so the minimum number of points (64 in our ex-
periments) to trigger classification was set at n × f where f
is the number of fingers. Once that minimum was met, the
traces collected up to that point represented an input window
and were classified by CircGR while the next input window
buffered and appended to the original window. If the gesture
stopped before meeting the minimum amount of points, the
input window was sent as is. The result was periodic classi-
fication executed as the users entered performed the gesture
over a series of windows in real time. Setting the window to a
smaller minimum n increases the rate of classification at the
expense of giving the classifier less information per window.

15

Queue (FIFO)

Rotation
Gesture

Swipe
Gesture

Rotation
Gesture

Gesture

t1

t2

t3

t
i
m
e

["] ID=4 ID=4 ID=4 ["] ID=1 ["] ID=1 ID=1 ID=2 ["] ["] ["] ["] ["] ["] ["] ["]
 x=100 x=100 x=100 x=111 x=105 x=107 x=300
 y=250 y=250 y=250 y=263 y=256 y=261 y=245

Window (64 points x 3 fingers x 3 windows)

["] ID=4 ID=4 ID=4 ["] ID=1 ["] ID=1 ID=1 ID=2 ["] ["] ["]
 x=100 x=100 x=100 x=111 x=105 x=107 x=300
 y=250 y=250 y=250 y=263 y=256 y=261 y=245

Window (64 points x 3 fingers x 2 windows)

["] ID=4 ID=4 ID=4 ["] ID=1
 x=100 x=100 x=100
 y=250 y=250 y=250

Window (64 points x 3 fingers x 1 window)

Figure 3. Early Gesture Detection Example with Multiple Windows (over time t1, t2, and t3).

Early Gesture Detection
An important feature of CircGR is that it provides early ges-
ture detection for multi-touch gestures. In many detection
algorithms (not including ad-hoc detection algorithms), such
as $P [34], detection is completed at the end of the trace (or
gesture). However, for gestures that require immediate feed-
back, this option is not ideal. As explained in the previous
paragraph, CircGR performs continuous detection once each
window is completed (in our case every 64 resample points)
or once the input of data points stops. That means that for
gestures that have multiple windows we can start performing
(early) detection as soon as the window of size N is com-
pleted. Our experiments yielded ACC=99% and MCC = 86%
for the first window. It is important to note that some ges-
tures may have less than 64 resample points (as is the case for
short interaction gestures) and each user may produce a dif-
ferent number of points for similar gestures. Nevertheless,
this recognition rate, while lower compared to our overall
recognition accuracy at the end of the gestures (ACC = 99%
and MCC = 0.95), it is still fairly accurate when one consid-
ers the few data points which are considered. An example
is provided in Figure 3. In this example, a gesture generates
multiple windows. When the first window is captured, there
is immediate recognition. With most gestures, the classifica-
tion is accurate in the first window (ACC=99%, MCC=86%).
As more data is collected the algorithm considers all windows
up to that point. For our experiment, the window size was 64
points for each finger (trace). Therefore, in the last window
in this example, there are 64 points × 3 fingers × 3 windows
totaling 576 points for classification at t3. Note: if the ges-
ture ends before the last window has all N points the window
gesture will be analyzed the same way

CircGR: RECOGNITION
Recognition is simply the template that has the lowest dis-
tance toward the input. The distance between two angles,
and total distance is simply the sum of these distances calcu-
lated over spatial and temporal angles. Only similarly labeled
angles of the same type (spatial or temporal) are compared.
Typically, this approach introduces the need to ”pair” input
and template angles in order to minimize the total distance.
The $-family’s $P approaches this problem with a greedy al-
gorithm [34]. As circular data is one-dimensional, a simpler
approach was possible without a significant loss of classifi-
cation performance. In the case of spatial angles, the obser-

vations are sorted in ascending order, then paired off sequen-
tially. Temporal angles are added in the order in which they
occur, so they are paired off in that order without sorting.

Undoubtedly, there will be mismatches in the number of an-
gles for specific labels. For example, an input gesture that
contains ”Up” angles exclusively might be compared to a
template that contains only ”Down.” In this case, distance
penalties are levied against the template depending on the
type of angle. For spatial angles of a label, every unpaired
angle in the template is compared to the resultant vector of
the candidate for that label (and vise versa). If there is no re-
sultant for a label, then the gesture resultant vector R is used.
For temporal angles, a penalty of π is added to the total dis-
tance for each unmatched angle.

Potential templates are culled if the amount of fingers or the
amount of anchors don’t match before continuing the recog-
nition process. As such, it is possible to obtain no classifica-
tion if the user enters a gesture that is explicitly outside of the
gesture set.

CircGR: RUNTIME ANALYSIS
CircGR revolves around two basic processes, construction
and classification. The construction algorithm involves the
creation of a gesture representation from raw 2D input data
as discussed above. Construct first acquires information on
each trace (including possible anchors) through Algorithm
1, which runs at O

(
tn
)
, with n being the number of points

for the largest trace and t being the number of traces. In
practice, the number of traces are limited to 10 or less due
to human limitation, so at worst, Algorithm 1 is linear in
O
(
10n

)
≈ O

(
n
)
. Construction performs anchor detection

and centroid calculation at O
(
t
)

(see Algorithm 4 in ap-
pendix). The second notable part of construction is process-
ing each trace (excluding anchors) through ProcessTrace (Al-
gorithm 3) which consumes the information calculated at ear-
lier generated angles. All algorithms within the while loop
are O

(
1
)
, leaving the for and while loop to contribute the

bulk of the running time. Processing each trace through both
these loops is done in O

(
kn

)
, where k is some constant that

depends on the exact nature of the points in the trace. If a
trace consists of equally spaced points and |trace| is equal
to the sampling resolution, then k ≈ 1 because that trace
would be similar to its re-sampled counterpart. Deviations

16

 A B C D E F

1

2

3

4

5

8

Figure 4. Complete Gesture Set.

from this counterpart would increase k to some larger con-
stant. Nonetheless, the method scales with number of points
passed as a parameter, O

(
n
)

over all. ProcessTrace is called
t times for a run time of O

(
10n

)
. Calculation of resultants is

O
(
1
)

for a total construction time of linear O
(
n
)

overall with
a variable constant depending on amount of trace.

Classification is implemented in Algorithm 2 (see appendix).
Each template is compared to the candidate input in all labels
through CalculateDistance in Algorithm 5 (see appendix).
CalculateDistance involves sorting spatial angles for that la-
bel and then calculating the circular distance. Sorting dom-
inates the run time, making Algorithm 5 O

(
n log n

)
. In the

worst case scenario, all templates are compared for a running
time of O

(
Tn log n

)
where T is the amount of templates.

Furthermore, given that templates are culled if they do not
have the same number of traces or the same number of an-
chors, the average run time constant for T will typically be
lower depending on the gesture set.

EXPERIMENT DESIGN
CircGR was evaluated via 12,960 gestures collected from 60
participants over the 36 gesture specified in Figure 4. Each
gesture in Figure 4 is displayed as a contact point and a prop-
agation direction after contact (e.g., A1 is a one finger left
swipe). Contact points without movement represent anchors.
The gesture set utilized here was expanded from a set of 20
gestures specified in [10].

Participants
Each participant was given an entry questionnaire to establish
a baseline for previous touchscreen experience. Participants
Ages ranged from 18 to 47, with an average of 24.2 (SD=4.1)

and a male majority (∼75%). Most were students work-
ing toward a degree in Computer Science; over 90% were
right handed. Participants were asked to select the frequency
at which they use non-smartphone touchscreen-enabled de-
vices as ”Never”, ”A couple of times a year”, ”Few times
a months”, ”Few times a week”, ”About once every day”,
”Multiple times a day”, and ”Multiple times a day for long pe-
riods of time.” 39% of the participants reported using touch-
enabled devices multiple times a day or multiple times a day
for long hours. Roughly two-thirds of the participants re-
ported that they use touchscreen-enabled devices at least as
frequently as a ”few times a week.” The majority(86.1%) re-
ported to have experienced an increase in preference for using
touchscreens since obtaining their smartphone. When asked
about the importance of having gestures to touchscreen us-
age, 66.2% felt it was important, with 88.2% feeling that it
was at least ”somewhat” important. The majority (58.7%) felt
that multi-touch systems should allow users to specify custom
gestures, with 80% reporting that this quality is at least some-
what important. The average number of touchscreen-enabled
devices used per participant, not including smartphones, was
2.1 (SD=1.41).

Environment
Experiment was run in a canvas environment created in C#
application (using Windows API for multi-touch events) run-
ning on Windows 7 PC and standard (Acer FT220HQL)
multi-touch display. The application logged all of the touch
data as a bundle of traces made up of 2D points tagged with
their touch ID and timestamps.

Participant Groups
The templates used for gestures set in Figure 4 were created
beforehand. In order to see if there was a difference between

17

Figure 5. Confusion matrix over all gestures captured in the experiment (true label).

using these templates and user created templates for the ges-
ture set, two groups of users were identified: the ”developer
template” group used the templates created specifically for
the experiment and the ”user template” group created their
own templates for each gesture. Each participant was ran-
domly assigned to a group at the start of the experiment. In
order to standardize the procedure, both groups provided one
template for each of the gestures in the gesture set before
recognition trials began, but only the ”user template” group
had their templates used during the testing process.

Testing Process
The order in which gestures were presented was randomized
for each trial. Testing the classifiers on a specific gesture in-
volved two phases, training and recognition. During the train-
ing phase, participants were asked to enter the gesture twice
to familiarize themselves with the gesture before recognition.
During recognition, participants entered the gesture 6 times
within a bounded box that moves between gestures to stimu-
late articulation at different points of the screen. If the user
entered an explicitly incorrect gesture (e.g, using 5 fingers
when a 2 finger gesture was requested), the user was asked to
redo the gesture. Classification was performed during every
window interval, as well as at the end of the gesture when
participant ceased all contact with the screen. Afterwards,
the user was given 4 questions regarding the comfort of the
gesture they just performed, the suitability of that gesture for
mobile devices, the suitability of that gesture for everyday

use, and the suitability of that gesture for large screen devices
such as desktops. Answers were given in the form of a 7-
point Likert scale. The process was repeated for all gestures
for an estimated 36x8=288 gestures per participant.

RESULTS
The confusion matrix over all the gesture captured for all par-
ticipants is shown in Figure 5. The confusion matrix displays
classification results at the last window of input. Results are
consistent and promising through most of the gestures of the
gesture set, as demonstrated by the concentration of values
along the diagonal. The largest confusion for CircGR oc-
curred for gesture A3, confused for B3. Both gestures involve
2 anchors and movement to the left, A3 featuring a curved
movement versus B3 straight propagation. Interestingly, the
confusion is not pronounced in the opposite (B3 to A3) direc-
tion. Inattentive or fatigued execution can easily morph ges-
ture A3 into B3 (e.g., the user doesn’t curve enough) while
modifying B3’s execution to A3 requires far more effort. The
same pattern holds for the second and third most confused
gesture, F5 (confused for D5) and B8 (confused for D8), in-
dicating sub-optimal user execution was a contributing factor
to these misclassification and underscoring the importance of
incorporating human limitations and a user’s liability to mod-
ify gesture execution. From the confusion matrix, CircGR
averaged an ACC of over 99% demonstrating high recogni-
tion performance. The MCC metric ranges between -1 to 1,
1 indicating perfect prediction and -1 representing total dis-

18

agreement. MCC is usually lower than ACC due to the intro-
duction of penalties when the different templates are unevenly
represented over the data set. Regardless, CircGR managed
an MCC of 0.95, or 95% on average, over all gestures.

As previously mentioned, CircGR classifies touch input as
a series of input windows which represent the gesture. The
confusion matrix shows the results of classification at the last
input window (i.e. the point users fingers left the screen).
We used Cohen’s Kappa (κ) to test the correct identification
of gestures by our algorithm through each input windows.
Given that the number of windows varies per gesture, ACC
and MCC are unsuitable metrics for this assessment. The κ
statistic, like most measures of agreement, ranges from−1 to
+1, where 0 represents the amount of agreement that can be
expected from random chance. The κ statistic is specifically
used when a level of agreement is already expected in the
data (e.g., filtering guarantees that 1 finger gestures will not
be misclassified as other multi-finger gestures). While there
are no undisputed limits for defining agreement based on the
magnitude of the kappa statistic it can be generally agreed that
if agreement is less than that expected by chance then κ ≤ 0
and if agreement is greater than that expected by chance then
κ ≥ 0. For values ≤ 0.4 indicate poor agreement, values
0.4 − 0.75 indicate moderate agreement, and values ≥ 0.75
indicate excellent agreement. This applies to our experiment
as we use κ to measure the agreement of CircGR’s classifica-
tion to the gesture expected at that input window. Futhermore,
κ accounts for chance agreement giving a better estimate of
the true agreement of the CircGR, where chance agreement
represents the probability that CircGR will choose the cor-
rect template at random at that window. Figure 6 shows the
values of the kappa statistic based on the window being con-
sidered. As we can see in all cases, value above 0.82 indicates
near perfect agreement based on general guidelines per win-
dow.

When considering the first input window exclusively, CircGR
obtained 99% ACC, 0.86 MCC, and κ ≈ 0.90, which in-
dicates good performance from the first input window and
demonstrating promising results in terms of early detection.

Figure 6. Cohen’s Kappa (κ) statistic per window.

Limitations of the Study
The study has the following limitations: (1) complex gestures
are more likely to produce user-error, reducing the efficiency
of early-detection of the correct gesture (a four-finger gesture
may be recognized as a three-finger gesture because of user
error); and (2) the objective of this study was to identify the
accuracy of the algorithm for a pre-determined set of gestures
which were presented to the user on a one-by-one basis.

POST-HOC ANALYSIS: COMPARISON OF CircGR AND $P
All the gestures captured in the experiment were subject to
classification by CircGR and $P in a post-hoc experiment to
compare (1) recognition performance and (2) time taken to
classify gestures. $P was choosen due to its significance as a
simple to understand, implement, and use template matcher.
Recognition performance was obtained by off-line batch clas-
sification of the 12,961 gestures captured during the experi-
ment. Timing benchmarks where done at the batch level (tim-
ing how long it took to classify the entire batch) and at the
gesture level (timing how long each gesture took to classify).
Due to time variations stemming from the underlying OS, 30
trials where run on each classifier. An additional classifier
$P-Filter was added to observe the classification impact of fil-
tering out incorrect number of fingers. $P-Filter is $P with an
added benefit of invalidating templates that don’t match the
amount of fingers used during input, an aspect that is promi-
nent in CircGR. The same templates were provided as devel-
oper templates during the experiment were used for post-hoc.
Like the experiment, only one template for each gesture in the
gesture set was used as training data. All benchmarking for
recognition and time were performed on the same Dell Preci-
sion T1700 with an Intel R©CoreTMi7-4790 @ 3.60 GHz and
16 GB RAM.

Overall averages for all gestures across each benchmark are
illustrated in Table 1. Testing was done using Wilcoxon-Sign
Rank Sum Test, for pairwise comparison. Prior to this analy-
sis we ran the Shapiro-Wilk test on both recognition rates, as
well as, time benchmarks; in both cases we found p-values <
0.01 which indicate severe deviations from normality. Based
on this evidence, we proceeded to use non-parametric com-
parison methods. We first used the Kruskal-Wallis Rank Sum
test to identify whether there were any significant differences
overall. In all cases we found p-values < 0.01 which indi-
cate significant differences between classifiers. The pairwise
Wilcoxon-Sign Rank Test was used as a follow up to identify
the different pairs. Our analysis shows that CircGR has sig-
nificantly higher accuracy rates and MCC than $P for all ges-
tures in the gesture set, and higher accuracy rates and MCC
than $P Filtered in nearly all gestures, the exception being
two three-finger gestures, A3 and F3. This observation is
based on the results of the Wilcoxon Rank Sum Test using
a 95% confidence level. For a more complete analysis we
also compared $P and $P-Filter and found that in 9 gestures
(all 5-finger gestures, C1, D1, and C8) their ACC and MCC
were no different. $P-Filter was significantly performed sig-
nificantly better in both metrics in the remaining gestures.

In comparison to time benchmark, CircGR was found to
be significantly faster than $P and $P-Filter using Wilcoxon-

19

Sign Rank Sum Test. The time it takes to classify gestures
by users who utilized developer templates is not significantly
different than users who used user templates at a 5% level
of significance over all classifiers using the Wilcoxon Rank
Sum Test. We also compared developer versus user templates
for each independent classifier. Our analysis concluded that
CircGR and $P take a similar amount of time with developer
and user templates while $P-Filter takes a significantly longer
amount of time when compared to user templates, meaning
that filtering introduces variation to running time depending
on how user executes the gesture.

Table 1. Post-Hoc Results: CircGR and $P.

Classifier Running ACC MCC Batch PG‡
Time Time Time

CircGR O
(
T ∗ n logn

)
99% 0.95 3.46 s 0.5 ms

$P O
(
T ∗ n2.5

)
97% 0.45 125 s 19 ms

$P-Filter O
(
T ∗ n2.5

)
98% 0.68 20.9 s 3.2 ms

Legend: ‡Per-Gesture

CONCLUSIONS AND FUTURE WORK
We have described CircGR, a template matcher based on cir-
cular angles. We have demonstrated that CircGR can ac-
curately classify non-symbolic multi-touch gestures in real
time with significant ACC of 99%, MCC of 0.95, and sig-
nificant kappa statistics of across both early and late windows
highlighting its ability for early recognition as well as con-
tinuous detection. CircGR’s lack of excessive training data
requirements allows it to be easily expanded or supplemented
by samples from the users which demonstratively shown in-
crease performance over developer provided templates. Cir-
cGR, as presented, is simple to understand and implement
without specific expert knowledge. Future work includes the
possibility of expanding our work to 3D gesture recognition.
In addition, we will conduct an experiment to test 3D travel
with multi-touch using our algorithm. This implies that we
will need to consider how early detection plays a role in the
interaction of users. Finally, CircGR can be linearithmic
under the assumption that spatial observation must be sorted
during classification. Sorting provides the highest accuracy,
but this is not required for CircGR. A future study may evalu-
ate the degradation of accuracy when omitting sorting in Cir-
cGR.

Acknowledgments
Support provided by the National Science Foundation:
I/UCRC IIP-1338922, III-Large IIS-1213026, MRI CNS-
1429345, MRI CNS-1532061, MRI CNS-1532061, MRI
CNS-1429345, RAPID CNS-1507611, DUE-1643965. U.S.
DOT Grant ARI73. We acknowledge Lukas Borges, Vesna
Babarogic, Alain Galvan, and Jonathan Bernal. Finally, Jake
Wobbrock, Lisa Anthony, and Radu-Daniel Vatavu for the
many email discussions about multi-touch gesture recogni-
tion.

REFERENCES
1. GestureML - Gesture Markup Language.

http://www.gestureml.org/doku.php/gestureml,
2014. Accessed: 2017-3-10.

2. Abe, T., Shizuki, B., and Tanaka, J. Input techniques to
the surface around a smartphone using a magnet
attached on a stylus. In Proceedings of the 2016 CHI
Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’16, ACM (New York, NY,
USA, 2016), 2395–2402.

3. Anthony, L., and Wobbrock, J. O. A lightweight
multistroke recognizer for user interface prototypes. In
Proceedings of Graphics Interface 2010, GI ’10,
Canadian Information Processing Society (Toronto,
Ont., Canada, Canada, 2010), 245–252.

4. Anthony, L., and Wobbrock, J. O. $n-protractor: A fast
and accurate multistroke recognizer. In Proceedings of
Graphics Interface 2012, GI ’12, Canadian Information
Processing Society (Toronto, Ont., Canada, Canada,
2012), 117–120.

5. Bailador, G., Roggen, D., Tröster, G., and Triviño, G.
Real time gesture recognition using continuous time
recurrent neural networks. In Proceedings of the ICST
2Nd International Conference on Body Area Networks,
BodyNets ’07, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering) (ICST, Brussels, Belgium, Belgium,
2007), 15:1–15:8.

6. Beh, J., Han, D., and Ko, H. Rule-based trajectory
segmentation for modeling hand motion trajectory.
Pattern Recogn. 47, 4 (Apr. 2014), 1586–1601.

7. Benabbas, Y., Lablack, A., Ihaddadene, N., and Djeraba,
C. Action recognition using direction models of motion.
In 2010 20th International Conference on Pattern
Recognition (Aug 2010), 4295–4298.

8. Bimber, O. Continuous 6dof gesture recognition: a
fuzzy logic approach. gesture 1 (1999), 1.

9. Cirelli, M., and Nakamura, R. A Survey on Multi-touch
Gesture Recognition and Multi-touch Frameworks.
Proceedings of the Ninth ACM International Conference
on Interactive Tabletops and Surfaces - ITS ’14 (2014).

10. Damaraju, S., and Kerne, A. A gesture learning and
recognition system for multitouch interaction design
(poster). https://goo.gl/DSakjP, 2009. Accessed:
2017-4-2.

11. Dittmar, T., Krull, C., and Horton, G. A new approach
for touch gesture recognition: Conversive Hidden
non-Markovian Models. Journal of Computational
Science 10 (2015), 66.

12. Echtler, F., and Butz, A. Gispl: Gestures made easy. In
Proceedings of the Sixth International Conference on
Tangible, Embedded and Embodied Interaction, TEI
’12, ACM (New York, NY, USA, 2012), 233–240.

13. Freeman, H. On the encoding of arbitrary geometric
configurations. IRE Transactions on Electronic
Computers EC-10, 2 (June 1961), 260–268.

20

http://www.gestureml.org/doku.php/gestureml
https://goo.gl/DSakjP

14. Hong, P., Turk, M., and Huang, T. S. Constructing finite
state machines for fast gesture recognition. Proceedings
15th International Conference on Pattern Recognition.
ICPR-2000 (2000).

15. Hoste, L., De Rooms, B., and Signer, B. Declarative
Gesture Spotting Using Inferred and Refined Control
Points. In Proceedings of ICPRAM 2013, 2nd
International Conference on Pattern Recognition
Applications and Methods (Barcelona, Spain, 2013).

16. Jammalamadaka, S. R., and SenGupta, A. Topics in
Circular Statistics (Series on multivariate analysis ; v.
5), 1 ed. World Scientific, 2001.

17. Kammer, D., Wojdziak, J., Keck, M., Groh, R., and
Taranko, S. Towards a formalization of multi-touch
gestures. In ACM International Conference on
Interactive Tabletops and Surfaces, ITS ’10, ACM (New
York, NY, USA, 2010), 49–58.

18. Khandkar, S. H., and Maurer, F. A domain specific
language to define gestures for multi-touch applications.
In Proceedings of the 10th Workshop on
Domain-Specific Modeling, DSM ’10, ACM (New York,
NY, USA, 2010), 2:1–2:6.

19. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton++: A customizable declarative multitouch
framework. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’12, ACM (New York, NY, USA, 2012), 477–486.

20. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton: Multitouch gestures as regular expressions. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, ACM (New
York, NY, USA, 2012), 2885–2894.

21. Lü, H., and Li, Y. Gesture coder: A tool for
programming multi-touch gestures by demonstration. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, ACM (New
York, NY, USA, 2012), 2875–2884.

22. Myers, C. S., and Rabiner, L. R. A comparative study of
several dynamic time-warping algorithms for
connected-word recognition. The Bell System Technical
Journal 60, 7 (Sept 1981), 1389–1409.

23. NUI Group. Gesture Definition Markup
Language(GDML). http://goo.gl/ZYuf6N, 2009.
Accessed: 2017-2-10.

24. Ortega, F. R., Galvan, A., Tarre, K., Barreto, A., Rishe,
N., Bernal, J., Balcazar, R., and Thomas, J. L. Gesture
elicitation for 3d travel via multi-touch and mid-air
systems for procedurally generated pseudo-universe. In
2017 IEEE Symposium on 3D User Interfaces (3DUI)
(March 2017), 144–153.

25. Pittman, J. A. Recognizing handwritten text. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’91, ACM (New
York, NY, USA, 1991), 271–275.

26. Rekik, Y., Vatavu, R.-D., and Grisoni, L. Match-up &
conquer: A two-step technique for recognizing

unconstrained bimanual and multi-finger touch input. In
Proceedings of the 2014 International Working
Conference on Advanced Visual Interfaces, AVI ’14,
ACM (New York, NY, USA, 2014), 201–208.

27. Renaux, T., Hoste, L., Marr, S., and De Meuter, W.
Parallel gesture recognition with soft real-time
guarantees. In Proceedings of the 2Nd Edition on
Programming Systems, Languages and Applications
Based on Actors, Agents, and Decentralized Control
Abstractions, AGERE! 2012, ACM (New York, NY,
USA, 2012), 35–46.

28. Rubine, D. Specifying gestures by example. SIGGRAPH
Comput. Graph. 25, 4 (July 1991), 329–337.

29. Schmidt, M., and Weber, G. Template based
classification of multi-touch gestures. Pattern
Recognition 46, 9 (2013), 2487.

30. Scholliers, C., Hoste, L., Signer, B., and De Meuter, W.
Midas: A declarative multi-touch interaction framework.
In Proceedings of the Fifth International Conference on
Tangible, Embedded, and Embodied Interaction, TEI
’11, ACM (New York, NY, USA, 2011), 49–56.

31. Sezgin, T. M., and Davis, R. HMM-based efficient
sketch recognition. Proceedings of the 10th
international conference on Intelligent user interfaces -
IUI ’05 (2005).

32. Spano, L. D., Cisternino, A., Paternò, F., and Fenu, G.
Gestit: A declarative and compositional framework for
multiplatform gesture definition. In Proceedings of the
5th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS ’13, ACM (New
York, NY, USA, 2013), 187–196.

33. Starner, T., Weaver, J., and Pentland, A. Real-time
american sign language recognition using desk and
wearable computer based video. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20, 12 (Dec
1998), 1371–1375.

34. Vatavu, R.-D., Anthony, L., and Wobbrock, J. O.
Gestures as point clouds: A $p recognizer for user
interface prototypes. In Proceedings of the 14th ACM
International Conference on Multimodal Interaction,
ICMI ’12, ACM (New York, NY, USA, 2012), 273–280.

35. Wilson, A., and Shafer, S. Xwand: Ui for intelligent
spaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’03, ACM
(New York, NY, USA, 2003), 545–552.

36. Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures
without libraries, toolkits or training: A $1 recognizer
for user interface prototypes. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software
and Technology, UIST ’07, ACM (New York, NY, USA,
2007), 159–168.

37. Zhai, S., and Kristensson, P.-O. Shorthand writing on
stylus keyboard. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’03, ACM (New York, NY, USA, 2003), 97–104.

21

http://goo.gl/ZYuf6N

	Introduction
	Motivation: Yet Another Multi-Touch Classifier?
	Contributions

	Related Work
	Circular Measures
	Why Circular Measures?

	CircGR: Gesture Representation
	Labels
	Input Capturing
	Early Gesture Detection

	CircGR: Recognition
	CircGR: Runtime Analysis
	Experiment Design
	Participants
	Environment
	Participant Groups
	Testing Process

	Results
	Limitations of the Study

	Post-Hoc Analysis: Comparison of CircGR and $P
	Conclusions and Future Work
	REFERENCES
	Source Code and Gesture Repository
	CircGR Algorithms
	Experiment Environment

