
NUI-SpatialMarkers: AR Spatial Markers For the Rest of Us

Alex Karduna, Adam S. Williams, Francisco R. Ortega

Fig. 1. NUI-SpatialMarkers cross-device synchronization process

Abstract—Multi-user Augmented Reality (AR) development tends to be very difficult and there are few tools that allow developers to
easily deal with the unique problems that arise. One of the main problems that arises from multi-user AR is that of aligning objects. In
this paper we present a light weight, open source system for solving the aligning problem. This system was specifically designed to
make it as easy as possible for developers to modify components to fit their needs.

Index Terms—Augmented Reality, Networking, Spatial Anchors

1 INTRODUCTION

Unlike Virtual Reality (VR), in augmented reality (AR), there are both
virtual and physical objects. Physical objects are objects that can be
seen and interacted with when not using the AR device, while virtual
objects can only be seen through the AR displays. The advantage of
AR devices over VR and regular reality is that virtual and physical
objects can both be seen and interacted with, whereas virtual reality
only allows for virtual objects to be interacted with. Alongside this
unique ability comes a unique set of problems. One of these problems is
that of making multiple separate virtual objects synchronized between
simultaneous co-located users.

In a co-located collaborative environment users must be able to see
and act upon the same virtual objects. These objects must also have
their location and movements synchronized on all of the connected
head mounted displays (HMDs). Without this synchronization, both
a user’s immersion and their understanding of the environment can
be degraded. Consider viewing a shared visualization, if one user is
pointing at an area, then the other users need to have their HMDs
displaying the shared visualization in the same position, otherwise they
would not know what was being pointed at.

Recent work has used a multiplayer Unity library in conjunction
with image targets to synchronize content between AR devices [2].
Another approach to cross-device synchronization used in VR was

• Alex Karduna is a undergraduate researcher at Colorado State University
working in the NUILAB. E-mail: akarduna@colostate.edu.

• Adam Williams is a DARPA Post-Doctoral Fellow at Colorado State
Univeristy working in the NUILAB. E-mail:
Adam.Sinclair.Williams@colostate.edu.

• Francisco R. Ortega is an assistant professor at Colorado State University
and Director of the NUILAB. Research. E-mail: fortega@colostate.edu

to create a 3D model of the real-world environment and then have
each connected VR device use it’s controllers to record three identical
locations which were then used to synchronize the devices’ virtual
content [1] 1. Outside of research, systems including Azure’s spatial
anchors and Google’s ARCore cloud anchors solve this problem but
they do not allow the developer to control how the problem is solved 2

3. Additionally, both ARCore and Azure use resource heavy programs
to track physical objects then base the virtual objects location off of
those physical objects, a process which can degrade device performance
depending on the available compute power.

The major disadvantages of the existing synchronization approaches
and tools for cross-device coordinate synchronization is that they can
add an unnecessary level of complexity to the project, introduce more
computational overhead, or remove the developer’s control of how
synchronization is achieved. In this paper we introduce a novel Unity
compatible synchronization tool called NUI-SpatialMarkers. NUI-
SpatialMarkers was developed to be easy use and easy to incorporate
into an existing Unity project. It uses limited compute resources and
is able to be modified to fit developer and researcher needs. NUI-
SpatialMarkers is available for download at https://github.com/
NuiLab/NUI-SpatialMarkers.

2 GLOBAL COORDINATE SYSTEM

The first step in this system is creating the global coordinate system.
This global coordinate system is created by picking a point to be the
origin and a set of vectors that form the basis of the vector space. Any
point could work as the origin as long as all of the AR devices know
the location of the point in their own coordinate system, otherwise

1https://github.com/felixkosmalla/

unity-vive-reality-mapper
2https://docs.microsoft.com/en-us/windows/mixed-reality/design/spatial-

anchors
3https://developers.google.com/ar/develop/java/cloud-anchors/introduction

58

2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)

978-1-6654-8402-2/22/$31.00 ©2022 IEEE
DOI 10.1109/VRW55335.2022.00022

20
22

 IE
EE

 C
on

fe
re

nc
e 

on
 V

irt
ua

l R
ea

lit
y 

an
d 

3D
 U

se
r I

nt
er

fa
ce

s A
bs

tr
ac

ts
 a

nd
 W

or
ks

ho
ps

 (V
RW

) |
 9

78
-1

-6
65

4-
84

02
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

VR
W

55
33

5.
20

22
.0

00
22

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on June 23,2023 at 03:52:01 UTC from IEEE Xplore.  Restrictions apply. 



there would be no way of converting from the coordinate system of
the device to the global system. The real-world point that is used as
the origin for the connected AR-HMDs coordinate system is called the
shared point.

There are many methods of creating a shared point between several
devices including image targets [2] and manual triangulation [1]. This
toolkit uses a a relatively simple method for the generation of a shared
point to limit setup complexity (Figure 1). That said, this toolkit is made
to allow users to insert their own methods for synchronization, allowing
them to incorporate the most appropriate method based on their own
needs. An example approach that the developer could implement would
be to place a Quick Response (QR) code in a location where all of the
devices can scan it. As many AR devices will give the position of any
QR code scanned, the position of the scanned QR code can be used as a
share point. The default method used in the toolkit is to place one of the
AR devices on a stable surface and have the system mark the headset’s
position as the shared location. This process must be completed by
each connected AR-HMD.

After all AR-HMDs have their shared point (i.e., coordinate origin)
set, the device’s coordinate systems must be oriented. To do this a
basis or set of vectors that represent the x, y, and z axes are created.
While many differed basis vectors are possible, some lead to easier
implementation than others. The best basis vectors should be Unity
vectors and would ideally be shared between devices. This toolkit uses
the y-axis as the first basis vector. Most AR and even VR devices set
the y-axis perpendicular to the ground plane, allowing that vector to be
instantly shared between devices.

Generating the vector for the x axis will depend on the method
used for creating the shared point. In the default method, the vector
that is pointing in the direction of the device while it is placed at the
shared point is used. In order to make the vector easier to use the
y component is disregarded and the vector is scaled to a unit vector.
For other methods of getting the shared point, different methods for
creating the x axis will need to be used. The key is to ensure that the
vector is the same on all devices, has no y component, and has been
scaled to a unit vector. Once the x and y axis vectors have been created
the last one is the z axis which is just an orthogonal vector to the x axis
that has no y component. It is again helpful to scale this vector to a unit
vector.

3 CONVERTING COORDINATES

Having created the basis, and found the shared point to use as the origin,
the coordinate system is done. The last thing step is to figure out the
transformations required to convert to and from the local coordinate
systems to the global coordinate system. This task can be simplified
greatly if all of the coordinate systems share the same scale, which
is true for most use cases and is what this tool assumes. With this
assumption only three transformations need to be made to synchronize
a point between different device’s coordinate systems. The first step
is to subtract the vector of the synchronized point from the origin of
the global coordinate system. This gives the vector from the origin
point to the synchronized point. That vector then needs to be multiplied
by a rotational matrix in order to orient it relative to the origin of
the global coordinate system. After this last transformation has been
applied the resulting vector is the vector to the synchronized point
in the global coordinate system which can then be sent to the other
devices. The other devices can simply apply the inverse of this process
to convert the vector into their local coordinate system by using their
own rotational matrix and origin point. This process does not change
the rotation of the object; however, a similar process can be done on the
vectors representing the rotation of the object to rotate it. The vector
representing the objects rotation do not need to be subtracted from
the origin of the global coordinate system, they only need to have the
rotation matrix applied.

The synchronization process is executed by the converter component
of the NUI-SpatialMarkers tool. Developers can implement variations
of the process above to suit their project’s needs. These variations
can range from adding another transform to account for different scale
coordinate systems, to using quaternions to avoid certain constraints on

the movement (specifically gimbal lock).
The last steps required are to send the new coordinates to all of the

other devices and to receive any sent coordinates while also updating
the respective position of the objects affected. This is done using two
components, the first is networking component that sends any data
passed to it and stores any data received by it. The default implementa-
tion of this system sends the data passed to it as user datagram protocol
(UDP) packets to the other IP addresses supplied. NUI-SpatialMarkers
is configured to work on LAN and can be configured to work on larger
networks. The networking component automatically checks every
frame to see if there has been any data sent to it, and if so, it reads that
data and pushes it into the queue.

The second component used during this step is the object controller.
This component will need to be added to each synchronized object.
Each object controller will have a unique object identification code
(ID). The object controller component has two jobs. First, when the
object that the object controller is attached to moves, the controller
sends the new coordinates of that object and it’s ID to the converter
component. The converter then sends the processed coordinates and ID
to the the network component which sends those coordinates and the
ID as a UDP packet to all other devices.

The object controllers second job is to check if the network sender
has any packets that have the same ID as itself. If the network sender
does, it pop’s them off the queue and sends the coordinates to the
converter to be converted back into the local coordinate system. Once
converted, the object’s transform is updated to match the new coordi-
nates.

The object controller component has been given a couple other qual-
ity of life features, including disabling interactions with the attached
object when another user is interacting with it, and being able to dis-
able the object completely if the user removes that object. The object
controller class is made to be extendable by developers to suit their
needs. Possible changes include having multiple objects controlled by
the same controller, and making the controllers capable of generating
new objects.

4 USAGE

This section provides a quick start for adding this package to an existing
Unity project.

1. Download the repo inside the Unity project’s assist folder 4

2. Create an empty game object

3. Add all synchronized components as children of that empty object

4. Add the “network” and “converter” scripts to the empty object

5. Get the IP address of the AR devices that will be used and add
them to the public list in the network script

6. Add the “object controller” script to each of the objects

(a) Add the converter script to the “conv” public variable in
each of the object controller scripts

7. Add the “orienter” script to the camera/headset (this is typically
the main camera in the scene)

(a) Add the “converter” script to the “conv” public variable on
the “orienter” script

If the project does not use the Mixed Reality Toolkit (MRTK) version
2+ an additional step must be taken. In the code for each of the usages
of MRTK 2 specific commands there are comments explaining what
that code does so that the developer can replace it with a comparable
command from the AR development package that they are using.

Once these steps are complete the project is ready to build.

4https://github.com/NuiLab/NUI-SpatialMarkers

59

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on June 23,2023 at 03:52:01 UTC from IEEE Xplore.  Restrictions apply. 



5 LIMITATIONS

NUI-SpatialMarkers was built to work for most standard AR use cases;
however, there are some cases that are not covered by default. Two of
those common cases are, support for devices that have different scale
coordinate systems, or coordinate systems which have a y-axis that
does not point out from the center of the earth. Another limitation
was the choice to incorporate parts of the MRTK. As the MRTK is a
common AR development library this should not pose a problem for
most use cases, but when a project uses a different AR library this
package requires a few extra steps to set up.

6 CONCLUSION

NUI-SpatialMarkers provides a easy to use and highly modifiable
solution for networking and synchronizing across multiple co-located
AR-HMDs. This package provides developers and researchers with a
quick way to synchronize basic content across AR devices while also
providing space for extending the package to fit diverse use cases.

ACKNOWLEDGMENTS

This work was supported by the Office of Navel Research (ONR)
awards N00014-21-1-2949 and N00014-21-1-2580, by the National
Science Foundation awards 2106590, 2016714, 2037417, and 1948254,
and by the Defense Advanced Research Projects Agency (DARPA)
award HR00112110011. We would like to thank all of these sponsors
for their support during this project.

REFERENCES

[1] F. Kosmalla, A. Zenner, M. Speicher, F. Daiber, N. Herbig, and A. Krüger.

Exploring Rock Climbing in Mixed Reality Environments, page 1787–1793.

Association for Computing Machinery, New York, NY, USA, 2017.

[2] A. S. Williams and F. R. Ortega. Using a 6 degrees of freedom virtual

reality input device with an augmented reality headset in a collaborative

environment. In 2021 IEEE Conference on Virtual Reality and 3D User
Interfaces Abstracts and Workshops (VRW), pages 205–209, 2021.

60

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on June 23,2023 at 03:52:01 UTC from IEEE Xplore.  Restrictions apply. 


