
Using a 6 Degrees of Freedom Virtual Reality Input Device With An
Augmented Reality Headset In A Collaborative Environment

Adam S. Williams*

Colorado State University
Francisco R. Ortega†

Colorado State University

ABSTRACT

Augmented reality headsets have become increasingly consumer-
available. Often gesture and speech are the main input modalities
provided by these headsets. For some tasks, users may need a
more precise input method. Tracked controllers can be added by
using image tracking; however, this is not always the most accurate
solution. This work outlines how to use off-the-shelf products to
create a collaborative cross-device mixed reality experience. In that
experience, the positionally tracked inputs from one headset can be
used by another headset that may not natively support them.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction devices—Haptic devices;
Human-centered computing—Human computer interaction (HCI)—
Interaction devices—Pointing devices; Human-centered computing—
Human computer interaction (HCI)—Interaction paradigms—
Collaborative interaction; Human-centered computing—Human
computer interaction (HCI)—Interaction paradigms—Mixed / aug-
mented reality; Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Virtual reality;

1 INTRODUCTION

Augmented reality (AR) head-mounted displays (HMDs) are be-
coming increasingly popular, as products such as the Microsoft
HoloLens 2 1 (HL2) becoming more readily available. This trend
is exhibited in the United States governments purchase of 100,000
HL2 units for military use [4]. AR-HMDs are being used in an
increasingly wide span of research, including work on situated ana-
lytics [6], multimodal input elicitation [14], and city planing [12].
Some consumer-available AR-HMDs (i.e., the Magic Leap 1 2) ship
with a 6 degrees-of-freedom (6DoF) controller; however, others
do not (i.e., HL2). The HL2 ships with mid-air gesture, speech,
and gaze as its primary interaction methods. It’s predecessor the
HoloLens 1 (HL1) shipped with those same inputs with the addition
of a single button clicker that was not tracked 3.

Access to the mid-air gestures used by these devices is often
included in the software development kit (SDK) provided for each
device. As an example, the Magic Leap 1 included 8 pre-defined
gestures in the Lumin SDK. Even with these gestures being easily
accessible to developers when used they require the user’s hands to
be tracked by the device’s cameras. The tracking space provided
by these cameras is often limited [13], which can make certain
interactions difficult. Furthermore, gestures are not always the most
precise interaction method for selection or manipulation tasks [3].

In some use-cases, the addition of a tracked mid-air controller
would be beneficial to both user immersion and interactions. In AR

*e-mail: AdamWil@colostate.edu
†e-mail: F.Ortega@colostate.edu

1www.microsoft.com/en-us/hololens
2www.magicleap.com/en-us
3www.docs.microsoft.com/en-us/hololens/hololens1-

clicker

adding a tracked input is commonly done by using image tracking
targets that are attached to emulated pen [11]. The downside to this
solution is that the pen can only be tracked while it is in range of the
headset’s front-facing cameras and while the image tracking targets
are visible to that camera. This type of tracking may cause drift or
errors where the image tracked input is not well calibrated to the
actual location of the physical input. A second, more problematic
issue is that this input can only be used while it is held in front of
or within the tracking area of the AR-HMD. This can be limiting to
users, especially so when the added input is a pen, where users may
wish to write notes on a surface in front of them while looking at
another location. Consider taking notes in a lecture while looking at
the whiteboard.

This limitation may not be detrimental for all use cases. For web-
browsing, streaming videos, and simple games, the combination
of gesture and speech may provide plenty of interaction technique
options. Other use cases, such as the selection and manipulation of
nodes on a scatter plot in an immersive analytics environment, may
require a more robust tracked input solution. This necessity is even
more prevalent in applications that require a user’s gaze to be in
one location while they hold, or manipulate an object at a different
location. As an example, if an analyst is writing notes while viewing
a complex data structure in an AR-HMD they may wish to be able
to write on a surface in front of them while glancing back and forth
from that surface to the data representation they are analyzing. In
this case, a camera tracked input would lose tracking when the user
looks away from their hand (e.g., the image tracked input).

The main contributions of this solution are:

• A networked cross-device environment for standalone use,
co-located collaboration, and remote collaboration

• The ability to use VR controllers with the HL2 or other MR
devices

• Easy integration of less standard VR inputs such as the Log-
itech VR-Pen 4

2 SYSTEM DESIGN

There are various commercially available AR-HMDs on the market,
with a reasonable market share held by the Microsoft HL2. The HL2
is developed to run using the Universal Windows Platform (UWP)
and the Mixed Reality Toolkit (MRTK) which makes integrating
Steam virtual reality devices difficult due to their use of a different
MR toolkit (i.e., Steam VR) and different tracking systems (e.g.,
base-stations compared to on device tracking).

To remedy these issues we present an input solution using the
Unity 3-dimensional (3D) development engine. This solution allows
the use of any 6DoF VR base-station tracked inputs to be used with
the HL2 or other MR-HMDs.

At a high level, this solution uses a multi-user client-server archi-
tecture to network various devices into the same virtual experience.
The positions of these devices are tracked and centered relative to
a fixed physical location. This allows synchronous co-located col-
laborators to view the same virtual environment in real-time. All

4https://www.logitech.com/en-us/promo/vr-ink.html

205

2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)

978-1-6654-4057-8/21/$31.00 ©2021 IEEE
DOI 10.1109/VRW52623.2021.00045

20
21

 IE
EE

 C
on

fe
re

nc
e

on
 V

irt
ua

l R
ea

lit
y

an
d

3D
 U

se
r I

nt
er

fa
ce

s A
bs

tra
ct

s a
nd

 W
or

ks
ho

ps
 (V

R
W

) |
 9

78
-1

-6
65

4-
40

57
-8

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
R

W
52

62
3.

20
21

.0
00

45

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on June 23,2023 at 04:01:38 UTC from IEEE Xplore. Restrictions apply.

connected HMDs can view and interact with the same virtual con-
tent; however, the world synchronization step differs by device. The
instance running on the VR-HMD with the desired inputs can be con-
nected and left on, while the controllers for that VR-HMD are given
to the AR-HMD user, which in this project was a HL2. This allows
the HL2 user to utilize the 6DoF input as tracked by the VR-HMD’s
base stations (e.g., infrared tracking stations). The VR-HMD used
in this project was the HTC Vive-Pro 5.

Figure 1: Vuforia image target mounted on top of Vive-Pro Base
Station 2.0, synchronization anchor position adjusted down from the
center of the image target to the base station center.

Synchronization is achieved on the AR-HMD by using Vuforia
image tracking to align a virtual anchor with a real-world location.
This anchor is referred to as the synchronization anchor, which is
an empty game object. This anchor and its corresponding Vuforia
image target are shown in Figure 1. VR-HMDs place their syn-
chronization anchor at this real-world location by using one of the
trackers provided by the device (the black object in Figure 1). This
project used one of the base-stations provided by an HTC Vive-Pro.
GameObjects can be parented in that synchronization anchor and
have their locations relative to that anchor synchronized between
devices.

Networking the devices adds a need to share the object locations
over the network, which can add some latency. The benefit of this
approach is that the networked solution provides an expandable
synchronized collaborative environment, where more than one user
may log in from different MR devices.

3 RELATED WORK

When looking at input devices for object selection and manipulation
in MR, work has found that mid-air pen outperforms standard vive
controllers in terms of speed and user preference [8]. There is also
evidence that pen-like input devices can outperform finger-pointing
(i.e., gesture) inputs [3], and that controller based hand-tracking has
outperformed the mouse in some 3D positioning tasks [9]. That
controller and pen based inputs show promise in MR environments
motivates the use of a mid-air pen or other tracked controller with
an AR headset.

In 2017 Bai et al. outlined an approach for using a Vive VR-HMD
6DoF controller with an HL1 AR-HMD [2]. That solution used
image tracking to synchronize the HL1 with a fixed world position.
The Vive HMD was also similarly synchronized by using one of
the Vive controllers placed at the same location as the HL1 tracked
image in the real-world. Bai et al. then used an off the shelf solution
for Bluetooth networking to transmit the Vive controller coordinates
and information to the HL1 [2]. This work differs in a few major

5https://www.vive.com/eu/product/vive-pro/

ways. First, the devices and software used are different simply due
to the time that has passed since the publication of that paper. That
difference also leads to the necessity of the shared anchor. The older
solution was able to move the world origin to synchronize virtual
content. The most important difference is that the previous solution
is for a single device where this solution can allow several devices
to connect to the same environment. The basic implementation of
this solution allows 20 clients. Some minor modifications can be
made to the server (i.e., local hosting) to allow up to 100 clients to
join the same experience.

Outside of using tracked controllers, other work has used image
tracking along with a tangible object, such as a 3D printed pen [11].
While those image tracked solutions are viable, they can lack pre-
cision and the ability to be used when the images are not in view.
Additionally, most tracked controllers can provide haptic feedback
which may be desirable for some projects. Another solution for map-
ping a 3D model in a VR environment to a real-world environment is
to find three or more real-world locations and to use the VR-HMD’s
controllers to locate and record those points, after which the system
can adjust the alignment of those same three points in the virtual
model to those points in the real-world [7] 6. A similar approach
could be used here where more than one image target is used to
synchronize the devices which would help to reduce the calibration
step used here.

4 SYSTEM COMPONENTS AND INTEGRATION

This section outlines how to integrate the various components needed
for this solution first. Later more detail is provided on the setup steps
for each component. This solution uses the following off the shelf
components: Unity (version 2019.3.1f LST), Photon Networking
version 2 (Photon PUN 2), Vuforia image tracking, the MRTK
(version 2.5), a Microsoft HoloLens 2, an HTC Vive-Pro with base
stations and controllers, and a Logitech VR-Pen.

4.1 Unity

The first step to setting up this solution is to install the Unity game
engine. Unity is a game development engine that supports devel-
opment for most MR-HMDs. This work uses the Unity version
2019.37). Unity may be downloaded at https://unity3d.com/
get-unity/download.

4.2 Mixed Reality Toolkit

This project uses the MRTK version 2.5 8. The MRTK is a multi-
platform mixed reality SDK that is compatible with the HL2, Win-
dows mixed reality, open VR, and most consumer-available MR
devices. The recommended way to integrate the MRTK into the
Unity project is to add the required packages to the project manifest
file. This process is further detailed in the MRTK documentation9.

4.3 Photon Engine

Next, the networking software needs to be added. This project uses
Photon engine 2 10. Photon engine is a Unity compatible multiplayer
networking system that offers both free and paid usage options. The
free solution offers access for up to 20 networked devices, or 100
networked devices if hosted on your own server. To add Photon to

6https://github.com/felixkosmalla/unity-vive-reality-

mapper
7https://unity.com/releases/2019-3
8https://microsoft.github.io/MixedRealityToolkit-

Unity/
9https://microsoft.github.io/MixedRealityToolkit-

Unity/version/releases/2.5.0/Documentation/usingupm.html
10https://www.photonengine.com/

206

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on June 23,2023 at 04:01:38 UTC from IEEE Xplore. Restrictions apply.

the Unity project go to the asset store and then search for and import
“PUN 2 - aFree” 11.

4.4 Image Tracking
This step is not necessary unless the project uses devices without
provided trackers (i.e., HL2). A simple to use image tracking solu-
tion is provided by Vuforia engine 12. Vuforia is a free to use image
tracking system that offers several types of image tracking options.
This project will only use the basic image tracking capabilities. In
Unity 2019 Vuforia can be added to a project in the “Project Set-
tings →Player” section. To add it check the “Vuforia Augmented
Reality Supported” check box. Note that Vuforia is not supported in
“windows standalone builds”, which are often used when deploying
to VR-HMDs. If a VR-HMD is used, the location of a provided
device tracker can be used in-place of Vufoira. This project uses the
location of one of the provided Vive base-stations.

5 SYSTEM SETUP

This section provides steps for how to use the above-outlined com-
ponents in unison towards the goal of creating a synchronous collab-
orative cross-device experience.

5.1 Networking Setup
First, set up the project to start a networked game instance. Once an
instance is initiated add the connected clients as players by using
Photon engine’s “instantiate” function. This will require setting up
a networked lobby, room, and player. An overview of how these
can be set up can be found in the Photon Unity tutorial 13. Other
details more specific to using Photon with the MRTK can be found
in the multi-user MRTK tutorial14. When tested on a residential
network the latency encountered when synchronizing objects was
around 78.6 milliseconds (ms) when averaged over 1000 updates.
Prior work using 2D selection tasks found that this level of latency
can cause minor (e.g., 15% performance decrease at 40 ms, 50%
performance decrease at 225 ms) performance losses; however, those
results were not directly extended into a 3D environment [10].

5.2 Coordinate Synchronization
Often the world origin (e.g., world-space coordinate 0,0,0) for AR-
HMDs the origin is set based on where the HMD is turned on or
where the HMD was when the app was started. VR-HMDs may have
a world origin set in the same way or set based on a location set up
in the “set up playspace” step of configuring the headset. Changing
this location is not an optimal solution for synchronization and is
discouraged by the MRTK [1, Section 4]. A better solution is to
use a Unity GameObject with its location set to the desired world
anchor (i.e., the synchronization anchor). Any networked objects
that need to be synchronized can be parented in that anchor GameOb-
ject. While this type of object synchronization is not provided by
Photon by default, it can be added with relatively low effort. When
synchronized objects are the local instance they will need to send
their transform information to their networked corollaries. When
these networked instances receive that information they can be set
to update their position accordingly.

The steps for placing a shared anchor in the appropriate real-world
location differs based on the type of devices being used. These dif-
ferences fall into two major categories: devices with image tracking
and devices with position trackers. Some part of the decision to use
one method over the other may be influenced by the build target used.

11https://assetstore.unity.com/packages/tools/network/

pun-2-free-119922
12https://developer.vuforia.com/
13https://doc.photonengine.com/en-us/pun/v2/demos-and-

tutorials/pun-basics-tutorial
14https://docs.microsoft.com/en-us/windows/mixed-

reality/develop/unity/tutorials

When using the HL2 or other Windows MR devices the build should
be set to UWP. When using Steam VR based or other VR based
devices the build should be set to “PC, Mac, & Linux Standalone”.

The two different build targets have access to a different set of
functionalities in the Unity engine application programming inter-
faces (API). These differences can be seen in the Unity documenta-
tion under “unityEngine.XR”. For the scope of this paper, the most
important difference in functionality is that the UWP does not have
access to base-station locations. We recommend using Unity’s “Plat-
form Dependent Compilation symbols” 15 if the project will be run
from both build targets. These allow the specification of which parts
of code get compiled for which build targets.

5.2.1 Synchronization of Devices With Trackers

Unity XR nodes and device trackers can be used to set the location
of the real-world aligned synchronization anchor. This is most easily
done by accessing the information of the tracked device through its
unity XR node and centering the synchronization anchor on it. For
this solution, one of the two base-stations used by the HTC Vive-Pro
is used; however, the use of a controller or other tracker can be simi-
larly effective [2]. Within the scope of this project, no interference
between the HL2 tracking and Vive Pro 2.0 base stations was noticed.
More information on how to locate XR tracked objects in Unity is
listed under “XRNodeStates” in the Unity documentation16.

5.2.2 Image Tracking Based Synchronization

Vuforia should be used with devices that have image tracking capa-
bilities but no positional trackers. Vuforia requires that an image
target is set up before tracking is started. This process is outlined
in their tutorial‘17. Once the image is registered for tracking with
Vuforia it can be printed and affixed to the desired position of the
real-world location for the synchronization anchor. In this project,
that location was on-top of the Vive base station. This setup is shown
in Figure 1.

This project only uses Vuforia once, to locate the base station
image target. Once the target has been found, Vuforia is no longer
needed. To conserve computational overhead we recommend man-
ually enabling and disabling Vuforia so that it is only active once.
Allowing manual enabling on Vuforia can be done by setting Vuforia
to delayed initialization. The option for that is option is located in
the Vuforia settings. For this project, we used platform dependent
compilation symbols to enable Vuforia when an AR-HMD was con-
nected and the appropriate scene (i.e., level) was loaded. Vuforia
was then disabled upon manual acceptance of the identified image
target. If a lot of headset movement is expected, it may be best to
leave Vuforia tracking on or to set up an MRTK spatial-anchor to
continually adjust the location of the anchor in case of tracking drift.

The accuracy of the tracked controller inputs depends on the
accuracy of the image target and its tracking. We have found that a
full page size image provides a reasonably easy to find target. The
placed anchor can drift when the headset is used too far from the
placed anchor or when the task involves looking around. This is
caused by minor changes in the location of the spatial mapping that
the HoloLens uses to track the location of the target. When a lot
of headset movement is expected we recommend keeping Vuforia
on to allow re-centering the synchronization anchor. An alternative
approach would be to use the azure spatial anchors that are provided
by the MRTK to maintain the synchronization anchor’s position.

15https://docs.unity3d.com/Manual/

PlatformDependentCompilation.html
16https://docs.unity3d.com/ScriptReference/XR.

InputTracking.html
17https://library.vuforia.com/articles/Training/getting-

started-with-vuforia-in-unity.html

207

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on June 23,2023 at 04:01:38 UTC from IEEE Xplore. Restrictions apply.

5.2.3 Cross-Device World Synchronization
When both image targets and the device’s positional trackers are used
for world alignment, some minor positional adjustments may need
to be made. For this project, the position of the image target centered
synchronization anchor has been adjusted down a fixed amount to
accommodate for the difference in height between the base-station
tracked location, and the image target affixed to the top of the base
station. Visualizations of the controllers and the connected HMDs
are shown in the experience to make the adjustment process easier
between devices. These models are shown as faint blue outlines
with transparent gray bodies for the controllers and as a 3-axis
GameObject with a user or device name displayed above it for
connected headsets. These models are shown in Figure 2.

Figure 2: Vive-Pro client and controllers as viewed through the
HoloLens 2.
Legend: The faint blue / gray controller outlines are the rendered

controller representations to visualize cross-device synchronization,
the controller labels are not part of the system, the Vive-Pro label is

enlarged for legibility.

5.2.4 Tracking Adjustments
Photon engine provides object synchronization natively. However,
due to the implementation of the world aligned anchor, the Photon
provided synchronization will not work. Custom photon information
streams can be set up to achieve cross-device synchronization. This
process is briefly described in the MRTK multi-user tutorial 18. This
tracking will either send the object’s transform information relative
to the synchronization anchor (e.g., the objects local transform), or
it will receive that information and adjust its own transform.

Note that as of the publication of this guide (2021), some users
may have issues where the devices will connect to Photon but are
unable to join the same instance of the networked environment.
The solution is currently to uninstall the Windows SDK version
10.0.19041.0 and to use version 10.0.18362.0.

5.3 Controller Usage
At this point, the project can synchronize content across devices.
To use the 6DoF tracked controller with an MR-HMD that does
not natively support it, both headsets need to be connected to the
same instance of the running Unity application. When the headset
that owns the desired controller is connected it will need to register
its controllers with the application and then parent their virtual
representations in the synchronization anchor. The controllers can
then be used by the person wearing the other HMD. The inputs

18https://docs.microsoft.com/en-us/windows/mixed-

reality/develop/unity/tutorials/

and positions from the controllers are still tracked by their HMD;
however, as everything is synchronized they can now be accurately
used by any party present in the same physical space.

6 MID-AIR PEN USE-CASE

Figure 3: A HoloLens 2 user drawing a line using the VR-Pen as seen
by both the HoloLens 2 user and the Vive-Pro user

Legend: Bottom left: view from inside the Vive-Pro with the
HoloLens user shown in the upper right, outside of the Vive-Pro

view: the HoloLens 2 user’s view

To demonstrate the cross-device functionality of this solution we
have implemented the Logitech VR-Pen19 for basic line drawing
on the HL2. An example of this functionality is shown from both
the Vive-Pro user’s and the HL2 user’s viewpoint in Figure 3. This
was done by setting up the project according to the above-mentioned
specifications.

After that setup Logitech VR-Pen can be accurately tracked with
its position being nearly identical in the Vive and the HL2. To ensure
that this tracking is functional while using an AR-HMD, a virtual
model of the pen is rendered over the physical pen on each client
(Figure 2). When the tracking is not aligned properly this model will
appear out of place compared to the physical pen (Figure 4).

To enable the pen to draw, and to have that drawing seen in
real-time on both devices, Unity’s “Line Renderer” class is used
along with a separate class for handling synchronization. The line
renderer class creates a line that connects a provided set of coordinate
locations. To render the line on each display as points are recorded
those points must also be sent and added to each networked instance
of the line render component. This can be achieved by sending the
points as part of the data stream that includes the local position of
the pen. In this project, all of the point and location transmissions
are handled by a separate synchronization class attached to the line
render component. The line drawn can be seen from both the Vive
and HL2 user’s viewpoint in Figure 3 and from the HL2 user’s when
not properly synchronized in Figure 4.

For this project, the Vive-Pro headset remains usable with a single
6DoF controller. The HL2 user can use the VR-Pen, which is the
Vive HMD’s second controller.

7 DISCUSSION

This solution outlines how to integrate and modify several free re-
sources to create a collaborative MR experience and to allow the
use of controllers across devices. The steps used to align the de-
vices’ world-locations is only relevant when setting up co-located
collaborative environments. When creating remote collaborative en-
vironments the synchronization provided by Photon will be enough.
That said, the use of the custom information streams may still be
beneficial as seen in the case of adding line renderer points when
drawing a line in real-time. This solution is robust enough to han-
dle a wide set of needs by accommodating both image tracker and

19https://www.logitech.com/en-us/promo/vr-ink.html

208

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on June 23,2023 at 04:01:38 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Poorly synchronized Vive-Pro client and controllers as
viewed through the HoloLens 2.
Legend: The faint blue / gray controller outlines are the rendered

controller representations to visualize cross-device synchronization,
the red is the line drawn using the VR-Pen.

positional tracker synchronizations as well as a selection of MR
devices.

It is reasonable to assume that as these devices mature, the tracked
area provided by them will improve. While the exact specifications
of most AR-HMDs tracking and viewing areas are difficult to find,
Microsoft has mentioned that the HL1 had a field of view (FoV)
of 34-degrees which increased to 52-degrees in the HL2 [5]. Note
that the FoV is different from the area tracked by the device. Even
so, a similar trend of improving the tracked area in each device
iteration can be expected. Yet, as of now, these devices offer limited
tracking, and other AR-HMD product releases in the near future
may include even less tracking as necessitated by a smaller form
factor (i.e., Apple Glasses). This tracking limitation is also present
on current mobile AR solutions.

8 CONCLUSION AND FUTURE WORK

This paper presents a networked synchronous cross-device MR solu-
tion that allows users of MR-HMDs to use the controllers provided
by other MR-HMDs located in the same physical space. This opens
up opportunities for researchers to use 6DoF inputs with devices
that typically do not support their use. A separate benefit of using
this solution is that the devices connected are instanced into a shared
synchronous MR experience, allowing this system to be used for
research on collaborative environments.

This solution is a work in progress and can be improved in several
ways. All of the networking was done over the cloud through Photon
Engine. That choice enabled remote collaboration and helped to
enable cross-device support; however, it was at the cost of increased
latency. Setting up a private server or if the intended use-case allows
setting up a local area network could both decrease this latency.
This project also used Vuforia for image tracking. It is possible to
incorporate a custom image tracking implementation if more control
over it is necessary. Another path forward would be to set up the
image tracked synchronization anchor alignment to work on a VR-
HMD’s built-in cameras. This would remove the need to adjust the
image target to the positional tracker’s location.

While there is room for improvement, this solution uses an easy
to assemble collection of off the shelf hardware’s and software’s to
facilitate synchronous cross-device collaboration and controller use.
This project can be easily extended for use in immersive analytics,
collaborative AR, and other multi-device MR experiences. This ease
of use is also found for extending the project to work with a variety
of controllers as demonstrated by the use of the Logitech VR-Pen

by an HL2 user.

ACKNOWLEDGMENTS

We would like to thank Logitech for their support and the Logitech
VR-Pen. This work was supported by the National Science Founda-
tion (NSF) awards NSF CNS 2016714, NSF IIS-1948254, and NSF
BCS-1928502 awards.

REFERENCES

[1] Installation guide — mixed reality toolkit documentation,

Jan 2020. Available at https://microsoft.github.io/

MixedRealityToolkit-Unity/Documentation/Installation.

html#4-add-and-configure-mrtk-with-a-new-scene.

[2] H. Bai, L. Gao, and M. Billinghurst. 6dof input for hololens using vive

controller. In SIGGRAPH Asia 2017 Mobile Graphics & Interactive
Applications, SA ’17. Association for Computing Machinery, New

York, NY, USA, 2017. doi: 10.1145/3132787.3132814

[3] M. A. Brown and W. Stuerzlinger. Exploring the throughput potential

of in-air pointing. In M. Kurosu, ed., Human-Computer Interaction. In-
teraction Platforms and Techniques, pp. 13–24. Springer International

Publishing, Cham, 2016.

[4] J. Brustein. Microsoft wins $480 million army battlefield contract,

Nov 2018. Available at https://www.bloomberg.com/news/

articles/2018-11-28/microsoft-wins-480-million-army-

battlefield-contract.

[5] L. Goode. The hololens 2 puts a full-fledged computer on your face, Feb

2019. Available at https://www.wired.com/story/microsoft-

hololens-2-headset/.

[6] D. Kalkofen, M. Tatzgern, and D. Schmalstieg. Explosion diagrams

in augmented reality. In 2009 IEEE Virtual Reality Conference, pp.

71–78. IEEE, 2009.

[7] F. Kosmalla, A. Zenner, M. Speicher, F. Daiber, N. Herbig, and

A. Krüger. Exploring Rock Climbing in Mixed Reality Environments,

p. 1787–1793. Association for Computing Machinery, New York, NY,

USA, 2017.

[8] D.-M. Pham and W. Stuerzlinger. Is the pen mightier than the con-

troller? a comparison of input devices for selection in virtual and aug-

mented reality. In 25th ACM Symposium on Virtual Reality Software
and Technology, VRST ’19. Association for Computing Machinery,

New York, NY, USA, 2019. doi: 10.1145/3359996.3364264

[9] J. Sun, W. Stuerzlinger, and B. E. Riecke. Comparing input methods

and cursors for 3d positioning with head-mounted displays. In Pro-
ceedings of the 15th ACM Symposium on Applied Perception, SAP ’18.

Association for Computing Machinery, New York, NY, USA, 2018.

doi: 10.1145/3225153.3225167

[10] R. J. Teather, A. Pavlovych, W. Stuerzlinger, and I. S. MacKenzie.

Effects of tracking technology, latency, and spatial jitter on object

movement. In 2009 IEEE Symposium on 3D User Interfaces, pp.

43–50, 2009. doi: 10.1109/3DUI.2009.4811204

[11] P. Wacker, O. Nowak, S. Voelker, and J. Borchers. Arpen: Mid-air

object manipulation techniques for a bimanual ar system with pen &

smartphone. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19, p. 1–12. Association for

Computing Machinery, New York, NY, USA, 2019. doi: 10.1145/

3290605.3300849

[12] A. S. Williams, C. Angelini, M. Kress, E. Ramos Vieira, N. D’Souza,

N. D. Rishe, J. Medina, E. Özer, and F. Ortega. Augmented reality

for city planning. In J. Y. C. Chen and G. Fragomeni, eds., Virtual,
Augmented and Mixed Reality. Design and Interaction, pp. 256–271.

Springer International Publishing, Cham, 2020.

[13] A. S. Williams and F. Ortega. Insights on visual aid and study de-

sign for gesture interaction in limited sensor range augmented reality

devices. In 2020 IEEE Conference on Virtual Reality and 3D User
Interfaces Abstracts and Workshops (VRW), pp. 19–22, 2020. doi: 10.

1109/VRW50115.2020.00286

[14] A. S. Williams and F. R. Ortega. Understanding gesture and speech

multimodal interactions for manipulation tasks in augmented reality

using unconstrained elicitation. Proc. ACM Hum.-Comput. Interact.,
4(ISS), Nov. 2020. doi: 10.1145/3427330

209

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on June 23,2023 at 04:01:38 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T22:37:04-0400
	Preflight Ticket Signature

