Procedural Celestial Rendering for 3D Navigation

Alain Galvan*

Francisco Ortega'

Naphtali Rishe?

Florida International University

Figure 1: An example 3D environment using our method of skybox generation.

ABSTRACT

Finding the best suitable environment for 3D navigation that utilizes
at least six degrees-of-freedom is still difficult. Furthermore, creat-
ing a system to procedurally generate a large virtual environment
provides an opportunity for researchers to understand this prob-
lem further. Therefore, we present a novel technique to render a
parametric celestial skybox with the ability to light environments
similar to natural color corrected images from telescopes. We first
pre-compute a spherical ray map that corresponds to the cubemap
coordinates, then generate stars and dust through a combination of
different noise generation shaders.

Keywords: 3d navigation, physically-based rendering

Index Terms: 1.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture—Fractals;

1 INTRODUCTION

3D navigation is an important pillar of user interaction. Navigation
includes travel (the engine that takes us from point A to point B)
and wayfinding (our cognitive spatial understanding of the environ-
ment) [1]. 3D travel may include six degrees-of-freedom (DOF) de-
pending on the domain requirements; however, in many instances,
a user may require less than 6 DOF. This leads to a question on
what type of environment is best suited to test 6-DOF interactions
(translations and rotations on the X,y, and z axes)? We believe that
the cosmos provides such environment to derive generic gestures
(or actions) that may serve in other 3D visualization environments.
The primary reason for this observation is that users may find it
necessary to perform all the translations and rotations for this envi-
ronment.

*e-mail:agalvan @fiu.edu
te-mail:fortega @fiu.edu
te-mail:ndr@acm.org

2017 IEEE Symposium on 3D User Interfaces (3DUI)
March 18-19, 2017, Los Angeles, CA, USA
978-1-5090-6716-9/17/$31.00 © 2017 IEEE

This paper presents one approach that may allow other re-
searchers to easily create large sets of data for interaction studies.
This will be valuable to the 3D User Interfaces (3DUI) community.
Instead of manually creating spaces, there are methods to automate
this process (see Section 2). We propose a newer method that pro-
vides an efficient real-time algorithm to render celestial skies as the
problem of large expanses of space still poses a problem for real-
time rendering. For example, some common techniques include the
use of pseudo-random noise clamped to specific intervals or the use
of static measured data. However, these techniques fail to accu-
rately represent space or fail to offer parametric control.

2 RELATED WORK

There has been plenty of research in rendering physically-accurate
day and night skies, but ambient light from stars and space has not
been given much attention. For Final Fantasy XV, Elcott et al. at-
tempted a similar technique of procedurally generating a sky with
raymarching, but used light probes rather than an ambient cubemap
to apply lighting effects to the environment [3]. Limberger et al.
attempted to render stars using billboards that are processed with a
pixel shader to adjust their brightness and color [8].

Jensen et al. provided a model for physically accurate night
skies but opted to use measured data to diffuse galactic and cos-
mic light [7]. They enumerated sources of night illumination that
we’ve opted to use in this paper, namely diffuse galactic/cosmic
light. Elek and Kmoch provided a model for spectral scattering
but focused on the effect this had on planetary atmospheres [4].
Similarly, other researchers have focused on a physically accurate
atmospheric scattering model [2, 6]. We make use of the technique
Bruneton and Neyret provided for planetary bodies in our example,
but opt to focus on outer space [2].

Our approach uses a cubemap (a 3D texture consisting of 6
faces), which has been used as a fast way of providing ambient
lighting for mobile devices, and has been by shown by Trindade et
al. to also serve in the use of rendering multi-scale 3D navigation
environments [10].

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 23,2020 at 20:15:26 UTC from IEEE Xplore. Restrictions apply.

float3 rayDirection = normalize (mul (uniforms.
ViewMatrix, float4 (Uv-float2(0.5, 0.5), .5,
0.))) .xyz;

OutColor.a = 1.0;

OutColor.rgb = stars(rayDirection, uniforms.
elapsedTime) ;

OutColor.rgb += wvoronoi (rayDirection, uniforms.
elapsedTime) ;

Listing 1: Fragment Shader for Celestial Rendering

3 APPROACH

We first formulate a physically-based model for starlight and star-
dust based on the user’s origin position, star size, and temperature.
We combine this with volumetric raymarching (a volumetric form
of ray-casting) techniques for clouds and dust. The model is ap-
plied via a shader (see Listing 1) to generate a high-dynamic range
cubemap. The result of the cubemap is a real-time, efficient, and
realistic environment that can be used either as a background, a re-
flection map, or an ambient cubemap light source. What is most
interesting about our approach is that if we applied our technique
to a ambient cubemap, a more rich animated interface would be
created because of the described dynamic lighting.

Algorithm 1 works by processing a cubemap render target. A
cube based spherical directional map is generated by the shader,
as shown in Figure 2, which is then used as an input to a four di-
mensional noise generation algorithm based on the work of Perlin
et al. to create volumetric diffuse effects [9]. The output of the
noise generation algorithms is composited with a white noise func-
tion mapped to sharp changes in luminosity values. We utilized
Varonoi noise because Zaninetti observed that the distribution of
galaxies in the universe closely resembles Voronoi diagrams [11].
Finally, due to the intense processing power required to render an
entire cubemap for every frame, we employ update throttling and
dynamically change the skybox resolution. Our system is imple-
mented as a plugin for Unreal Engine 4. Our source code is easy to
use and requires minimal changes to existing scenes. It is currently
available for download at https://github.com/OpenHID/
realtime-celestial-rendering.

Algorithm 1 General Algorithm For Celestial Rendering

Ensure: all input/output buffers must have been initialized
1: for cubeFace =1to 6 do
2: runShader(Texture[cubeFace), RotationMatrix|[cubeFace))
3: end for

Figure 2: A cube based directional map, overlaid with both lines
of latitude and a cubemap adapted from [5].

4 EVALUATION AND RESULTS

Our first evaluation of the system was during a gesture elicitation
study, where users navigated based on instructions (e.g., move left,

move right, rotate, etc.), as shown in Figure 3. The system per-
formed successfully with the load of a multi-touch and Intel Real-
Time sense camera. During the trials, we were able to constantly
refresh the generated sky at 60 frames per second on an Nvidia 980
GTX & 980m (circa 2014) with texels of 1024 pixels per cube face.
On an Nvidia 650m (circa 2012) the effect was too taxing, running
at 22 frames per second at 1024 texel size; however, 256 texel size
ran smoothly at 60 frames per second.

Figure 3: Participant using Celestial Sky

5 CONCLUSIONS AND FUTURE WORK

We have presented a method for a physically-based, real-time ren-
dering of celestial skies, building off of work from [7]. Our ap-
proach provides other researchers with the ability to create large
expanses of space for user interaction, in particular 3D navigation.
Our method results in a celestial environment that is easier to ma-
nipulate in situations where the sky transforms, such as in a space
ship or speeding up time. In addition, the use of cubemap light-
ing that looks similar to color corrected photographs provided by
NASA provides an optional light source for dim environments such
as night time.

REFERENCES

[1] D. A. Bowman, E. Kruijff, J. J. LaViola, Jr, and I. Poupyrev. 3D user
interfaces: theory and practice. Addison-Wesley Professional, 2004.

[2] E. Bruneton and F. Neyret. Precomputed Atmospheric Scattering.
Computer Graphics Forum, 27(4):1079, 2008.

[3] S. Elcott, K. Chang, M. Miyamoto, and N. Metaaphanon. Rendering
techniques of Final Fantasy XV. ACM SIGGRAPH 2016 Talks on -
SIGGRAPH 16, 2016.

[4] O. Elek and P. Kmoch. Real-time spectral scattering in large-scale
natural participating media. 2010.

[5] Epic. Creating cubemaps, 2016. [Online; accessed 20-Dec-2016].

[6] J. Haber, M. Magnor, and H.-P. Seidel. Physically-based simulation
of twilight phenomena. ACM Transactions on Graphics, 24(4):1353,
2005.

[71 H. W. Jensen, F. Durand, J. Dorsey, M. M. Stark, P. Shirley, and
S. PremoZe. A physically-based night sky model. Proceedings of the
28th annual conference on Computer graphics and interactive tech-
niques - SIGGRAPH ’01, 2001.

[8] D. Limberger, J. Engel, and J. Dollner. Single-pass rendering of day
and night sky phenomena. In Proceedings of the Vision, Modeling,
and Visualization Workshop 2012, pages 55-62. Eurographics Asso-
ciation, 11 2012.

[9] K. Perlin. Improving noise. In Proceedings of the 29th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
’02, pages 681-682, New York, NY, USA, 2002. ACM.

[10] D.R. Trindade and A. B. Raposo. Improving 3d navigation in multi-
scale environments using cubemap-based techniques. In Proceedings
of the 2011 ACM Symposium on Applied Computing, SAC 11, pages
1215-1221, New York, NY, USA, 2011. ACM.

[11] L. Zaninetti. Photometric Effects and Voronoi-Diagrams as a Mixed
Model for the Spatial Distribution of Galaxies. The Open Astronomy
Journal, 6(1):48, 2013.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 23,2020 at 20:15:26 UTC from IEEE Xplore. Restrictions apply.

