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Abstract. This paper outlines the statistical evaluation of novel and
traditional orientation estimates from an IMU-instrumented glove.
Thirty human subjects participated in the experiment by performing
the instructed hand movements in order to compare the performance of
the proposed orientation correction algorithm with Kalman-based ori-
entation filtering. The result of two-way multivariate analysis of vari-
ance indicates that there is no statistically significant difference in the
means of the orientation errors: Phi (F (1, 580) = .080; p = .777), Theta
(F (1, 580) = 2.556; p = .110) and Psi (F (1, 580) = .049; p = .825)
between the orientation correction algorithm using the gravity and mag-
netic North vectors (GMV) and the correction using Kalman-based orien-
tation filtering (KF). The different hand poses have a statistically signifi-
cant effect on the orientation errors: Phi (F (9, 580) = 129.555; p = .000),
Theta(F (9, 580) = 85.109; p = .000) and Psi (F (9, 580) = 134.474; p =
.000). The effect of the two algorithms on the orientation errors is con-
sistent across the different hand poses.
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Orientation correction algorithm · Bias offset error ·
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1 Introduction

There have been multiple studies on human hand motion tracking for the devel-
opment of the human-computer interfaces. Each system employs different types
of sensing units to detect the hand orientation and finger configurations based on
the applications. The systems for hand-shape and gesture recognition [7,9] utilize
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a number of accelerometers to determine the hand orientation from the acceler-
ation measurements. Some technologies [4,6] use magnetic sensors to determine
the movement of the thumb and fingers by sensing the change in magnetic field.

We have proposed and developed [16,17] an IMU-instrumented glove to deter-
mine the orientation of the human hand as an alternative approach for human-
computer interaction. The IMU-instrumented glove utilizes inertial measurement
unit (IMUs), which consist of accelerometer, magnetometer and gyroscope within
a single module.

The gyroscope is an inertial measurement device, which generates its output
signal as a measurement of angular velocity. Then, the orientation can simply
be determined by mathematical integration with respect to time. Nevertheless,
the Microelectromechanical Systems (MEMS) gyroscope may produce a non-zero
erroneous output signal even when the sensor is not in motion. This type of error
is called “bias offset error”, which is a common error in MEMS inertial sensors
that severely disrupts the orientation tracking and causes a major problem called
“drift” in several applications [3,18].

One of the common ways to improve orientation tracking and eliminate gyro-
scope drift in MEMS inertial measurement units is Kalman-based orientation
filtering [13,19]. Kalman-based orientation filtering is capable of determining
the orientation estimates based on the measurements, state variable model, sta-
tistical modeling of noise, and other uncertainties. Kalman filtering has been
used in numerous applications, especially in navigation systems for aircraft
and autonomous vehicles [8,12]. However, several studies [2,10] utilize sensor
fusion approaches to determine the orientation estimates by combining the mea-
surements from gyroscopes, accelerometers and magnetometers. Since, modern
MEMS IMUs contain gyroscopes, accelerometers and magnetometers in a single
module, IMUs then become a valid option in terms of cost, dimension and inte-
grability to be used for determining orientation in human-computer interaction
applications.

This paper outlines the statistical analysis of the effect of novel and tradi-
tional orientation estimates on the orientation errors in the form of Euler Angles
(Phi, Theta and Psi) from an IMU in a glove. The orientation correction algo-
rithm using the gravity and magnetic North vectors was performed in real-time
while the hand movement was being performed. The traditional orientation esti-
mates were obtained from the on-board Kalman-based orientation filtering of
the IMU.

2 Methodology and Materials

2.1 IMU-Instrumented Glove

For this evaluation, the “3-Space embedded” inertial measurement unit from
Yost Labs, as shown in Fig. 1(a) is used. The Yost Labs 3-Space sensor is a
commercial-grade Attitude and Heading Reference System (AHRS), consisting
of tri-axial accelerometer, gyroscope and magnetometer. The module integrates
on-board Kalman-based orientation filtering and can be connected to the host
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Fig. 1. (a) Yost Labs 3-SpaceTM sensor compared with a quarter (b) IMU-instrumented
glove.

Fig. 2. Block diagram of the orientation correction algorithm using the gravity vector
and the magnetic North vector correction (GMV).

computer via a USB cable. The Yost Labs 3-Space sensor was attached on a
glove, at the back of the hand (as shown in Fig. 1(b)), in order to measure the
angular velocity and acceleration of the hand motion. In addition, the module can
determine the direction of the magnetic field with respect to the sensor’s body
frame. These three quantities are used to calculate the orientation estimates
using the proposed algorithm.
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2.2 Orientation Correction Using the Gravity and Magnetic North
Vectors

For this evaluation, we compared the performance of human hand orientation
estimation obtained from the traditional method (Kalman-based orientation fil-
tering) with our proposed orientation estimation method, which utilizes the sen-
sor fusion approach. The approach initially involves the dead-reckoning pro-
cess, which is the calculation of a current orientation based upon previously-
determined angle and measured angular velocity from the MEMS gyroscope in
the Yost Labs 3-Space sensor. The proposed orientation estimation method also
includes the correction of the orientation estimates, utilizing the measurements
of acceleration due gravity from the accelerometer and the direction of magnetic
North from the magnetometer, both integrated in the same sensor module.

A novel orientation correction algorithm was previously proposed and imple-
mented [15–17] to improve the orientation estimation. Each step of the orienta-
tion correction algorithm using the gravity and magnetic North vectors, labeled
by a number in Fig. 2, is described as follows:

(1) Prediction of the Bias Offset Error. A gyroscope should generate zero
angular velocity output when the sensor module is not in motion. However, a
commercial-grade MEMS gyroscope can generate an erroneous output signal
that deviates from zero, called “the bias offset error”, which yields an unaccept-
able orientation error, called “drift”. The bias offset error in a MEMS gyroscope
changes randomly through time and consists of both deterministic and stochas-
tic components [1]. Therefore, the bias offset error should be determined and
updated whenever the IMU is in a static period. The bias offset error of the
gyroscope reading (b̂) is determined by averaging five consecutive gyroscope
samples, in which their magnitudes are smaller than the pre-defined thresholds.

By subtracting the bias offset error (b̂) from the raw gyroscope reading (ω0),
the unbiased angular velocity (ωB) is obtained as described in Eq. 1. The unbi-
ased angular velocity is then used to calculate the dead-reckoning orientation
estimates in the next step.

ωB = ω0 − b̂ (1)

(2) Estimation of a Quaternion Orientation. For the purpose of orientation
correction and to avoid the gimbal lock problem, quaternion notation will be
used to describe the orientation in this work. A quaternion is a 4-dimensional
quantity, consisting of one real part and three imaginary parts. It is a common
representation for the rotation of an object in computer graphics [11].

The unbiased angular velocity (ωB) obtained from the previous step is con-
verted into a quaternion domain as the quaternion rate (q̇), as shown in Eq. 2,
where q̂0 is the quaternion estimation from the previous iteration of the algo-
rithm. At the beginning, q̂0 is initialized as [0, 0, 0, 1] to indicate zero-degree
rotation for all three axes.

q̇ =
1
2
q̂0 ⊗ ωB (2)
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qG = exp((Δt)q̇ ⊗ q̂∗
0) ⊗ q̂0 (3)

Equation 3 implements the dead-reckoning process, in which the quaternion
qG represents the estimated orientation (current orientation) calculated from
the quaternion rate q̇ (known angular velocity in quaternion domain) and the
quaternion estimation from the previous iteration q̂0 (previously-determined ori-
entation). Here Δt is the sampling interval of the data received from the IMU.
This estimated quaternion (qG) can be used to describe the approximate orien-
tation of the IMU. However, the removal of the bias offset error from gyroscope
reading can be over- or under-compensated. Consequently, a small amount of
drift is still present and it is corrected by using the gravity and magnetic North
vectors in the next step.

(3) Quaternion Correction. The acceleration due to gravity of the Earth
always has its direction pointing towards the Earth’s center. The estimated ori-
entation qG in Eq. 3 obtained from the previous step, which can approximately
describe the orientation of the IMU with respect to the Earth frame, can also
be used to transform the gravity vector in the Earth frame into the gravity
vector referenced in the IMU’s body frame, namely the calculated gravity vector
(a(qG)), by using Eq. 4. In this equation, Aint is the initial measured gravity vec-
tor in the Earth frame. Since the calculated gravity vector (a(qG)) is referenced
in the IMU’s body frame, it can be used to compare with the measured gravity
vector (a0) from the accelerometer, which ideally measures only the acceleration
due to gravity (in the IMU’s body frame) when the IMU is in a static period.

a(qG) = qG
∗ ⊗ Aint ⊗ qG (4)

The angular difference between the calculated gravity vector (a(qG)) and
the measured gravity vector (a0) represents the error of orientation estimation,
which can be determined in the form of a quaternion denoted by ΔqA, as shown
in Eq. 5, where qAv = a0 × a(qG), and qAw = ‖a0‖‖a(qG)‖ + a0 · a(qG). Equa-
tion 6 describes the correction of the orientation estimates qG by ΔqA since the
product of 2 quaternions implies compounding of their rotations. The estimated
quaternion q̂GA yields the orientation estimates fully corrected by the gravity
vector.

ΔqA = H(qAv, qAw) (5)

q̂GA = qG ⊗ ΔqA (6)

The correction of the orientation estimate based on the magnetic North vec-
tor follows a similar principle. The direction of the Earth’s magnetic field is
pointing from the geographic south pole to the geographic north pole and is
constant at a particular point on the Earth surface. The estimated orientation
qG in Eq. 3 obtained from the dead-reckoning process, which can approximately
describe the orientation of the IMU with respect to the Earth frame, can also
be used to transform the magnetic North vector in the Earth frame into into
the magnetic North vector referenced in the IMU’s body frame. This yields the
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calculated magnetic North vector (m(qG)), using Eq. 7, where M int is the ini-
tial measured magnetic North vector in the Earth frame. Since the calculated
magnetic North vector (m(qG)) is referenced in the IMU’s body frame, it can
be used to compare with the measured magnetic North vector (m0) from the
magnetometer readings.

m(qG) = qG
∗ ⊗ M int ⊗ qG (7)

The angular difference between the calculated magnetic North vector (m(qG))
and the measured magnetic North vector (m0) can also represent the error
of orientation estimation, which can be determined in the form of a quater-
nion denoted by ΔqM , as shown in Eq. 8, where qMv = m0 × m(qG), and
qMw = ‖m0‖‖m(qG)‖ + m0 · m(qG). Equation 9 describes the correction of the
orientation estimates qG by ΔqM . The estimated quaternion q̂GM yields the
orientation estimates fully corrected by the magnetic North vector.

ΔqM = H(qMv, qMw) (8)

q̂GM = qG ⊗ ΔqM (9)

(4) Adaptive Quaternion Interpolation. The last step of the orientation
correction algorithm is to calculate the final quaternion estimate from the orien-
tation estimates fully corrected by the gravity vector (q̂GA) and the orientation
estimates fully corrected by the magnetic North vector (q̂GM ), based on the cur-
rent conditions of the IMU. When the IMU is in rapid motion, the measurement
from accelerometer includes an acceleration due to linear motion. Therefore, the
accelerometer cannot be used as a reference for orientation correction. In con-
trast, the magnetometer measurement is not affected by the rapid movement of
the hand (but it could be affected by local distortions of the magnetic field). To
calculate the final orientation estimates (q̂OUT ), Spherical Linear Interpolation
(SLERP) [5] is adapted as an approach to determine the interpolated quaternion
between two quaternions by using an adaptive weight (α), as shown in Eq. 10.

q̂OUT =
q̂GMsin((1 − α)Ω) + q̂GAsin(αΩ)

sin(Ω)
(10)

Ω = cos−1(q̂GM · q̂GA) (11)

The adaptive weight α, ranging from 0 to 1, is a measure of the “stillness”
of the IMU and can be used to linearly interpolate the two quaternions. When
the IMU is in a static period, the value of α = 1, making the final estimated
quaternion orientation (q̂OUT ) match the orientation estimates using only the
gravity vector correction (q̂GA). When the sensor is in rapid motion, the value of
α drops towards zero. Thus, the final estimated quaternion orientation (q̂OUT )
is the interpolated quaternion, which tends towards the orientation estimates
using only the magnetic North vector correction (q̂GM ). The final estimated
quaternion orientation (q̂OUT ) is then used in the dead-reckoning process for the
next iteration of the algorithm.
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3 Implementation

3.1 Evaluation Protocol

Thirty human subjects were recruited to participate in the evaluation exper-
iment. Each of the subjects wore the IMU-instrumented glove on his/her left
hand and sat on a chair, facing towards a computer screen. A rectangular frame
with guiding position and orientation markers was placed in between the subject
and the computer screen. The testing environment was set up as shown in Fig. 3.
Each subject was asked to perform specific hand movements as instructed on
the computer screen. This instructed hand movement guide was created within
a virtual 3D environment using Unity. The virtual 3D environment consists of
a 3D left-hand model and the model of rectangular frame which is identical to
the physical frame placed in between the subject and the computer screen. The
model of the rectangular frame in the 3D environment helped the test subjects
to easily understand and perform the requested hand movements correctly. The
hand movement guide was displayed as an animation of the 3D hand model
movement, visualizing a sequence of 10 pre-defined movements of the 3D hand
(as shown in Fig. 4). The subjects were asked to replicate the orientation of each
virtual hand pose shown on the screen while wearing the IMU-instrumented
glove. The angular velocity, acceleration and the direction of magnetic field from
an inertial measurement unit (IMU) attached at the back of the hand, were
recorded. The proposed orientation correction algorithm, described in Sect. 2,
was implemented to calculate the estimated orientation. The orientation esti-
mates obtained with the orientation correction algorithm using the gravity and
magnetic North vectors (GMV) were compared to quaternion outputs from the
Kalman-based orientation filtering, streamed directly from the Yost Labs 3-Space
sensor module (KF).

3.2 Experiment Procedure

Each subject was asked to wear the IMU-instrumented glove on his/her left
hand and orient the hand to match the hand orientation in Pose 1 of Fig. 4.
Then, The experimenter recorded the initial orientation of the hand by clicking
the button “Mark this orientation”. After that, the experimenter clicked on the
button “Show hand movement” in order to display the animation of the 3D hand
movement, stopping at the next hand pose that the subject had to achieve. The
subject then moved his/her hand to match the orientation as requested on the
screen. The experimenter clicked on the button “Mark this orientation” to record
the current orientation of the subject’s hand. The procedure was repeated until
all 10 poses of the hand movement had been performed by the subject. At the end
of the session, the subject removed the IMU-instrumented glove and answered
some questions regarding gender, age, and his/her dominant hand.



Statistical Analysis of Novel and Traditional Orientation Estimates 289

Fig. 3. The testing environment set up to evaluate orientation correction algorithms
for IMU-instrumented glove

4 Results and Discussion

Thirty test subjects participated in the experiment to evaluate the performance
of the orientation correction algorithms. Among the thirty subjects, there were 20
male and 10 female healthy participants. Only one participant was left-handed.
Each test subject was asked to wear the IMU-instrumented glove and move
his/her hand to match the 10 pre-defined poses of the hand movement. The
orientation correction algorithm using the gravity and magnetic North vectors
(GMV) was implemented to determine the orientation estimates of the hand,
while the corrected orientation using Kalman-based orientation filtering (KF)
was being streamed directly from the Yost Labs 3-Space sensor module. For the
orientation output from both orientation correction algorithms (GMV and KF),
the orientation errors in the form of Euler angles (Phi, Theta and Psi) were
calculated based on the assumption that the test subjects were able to exactly
match the instructed hand poses, which were considered as “ground truth”.
The orientation errors were used to evaluate the performance of the orientation
correction algorithms.

A total of 600 data points of the orientation errors for each of the three
Euler angles (30 test subjects × 10 hand poses × 2 algorithms) were recorded
and analyzed using SPSS. The experiment was designated to predominantly test
for the effects of the two different orientation correction algorithms on the mean
of orientation errors. In addition, the effect of the 10 hand poses on the mean of
orientation errors was also investigated. Table 1 shows the marginal means and
the standard deviations of the orientation errors for each of the two algorithms,
computed by averaging across the 10 hand poses. The means of the orientation
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6esoP1esoP

7esoP2esoP

8esoP3esoP

9esoP4esoP

01esoP5esoP

Fig. 4. The sequence of the 3D hand model movement (poses 1 to 10).

errors for the orientation correction algorithm using the gravity and magnetic
North vectors (GMV) are slightly different from those of the correction using
Kalman-based orientation filtering (KF), in all three Euler angles. The marginal
means and the standard deviations of the orientation errors for each of the 10
hand poses averaging across the two algorithms, are also calculated and shown
in Table 2. The means of the orientation errors are noticeably different across
all poses in all three Euler angles. To test for the significance of the effects of
the two factors (type of algorithm and hand poses) on three dependent variables
(Euler angles: Phi, Theta and Psi), two-way multivariate analysis of variance
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Table 1. Marginal means and standard deviations of the orientation errors for each
algorithm

Dependent variable Algorithm N Mean (deg) Std. deviation

Phi GMV 300 5.240 4.975

KF 300 5.171 5.151

Theta GMV 300 4.646 4.560

KF 300 4.258 4.365

Psi GMV 300 4.854 5.230

KF 300 4.799 5.219

(two-way MANOVA) is suggested [14] as an appropriate statistical test model.
The null hypotheses for two-way MANOVA are described below.

1. There is no difference in the means of orientation errors between the two
algorithms.

2. There is no difference in the means of orientation errors for all hand poses.
3. There is no interaction between the two factors (type of algorithm and hand

poses).

The orientation error data was tested using the General Linear Model (mul-
tivariate) in SPSS with .05 level of significance. The result of two-way multi-
variate analysis of variance (two-way MANOVA) for the effects of orientation
correction algorithms and hand poses on the mean of the orientation errors is
shown in Table 3. It is found that there is no statistically significant difference
in the means of the orientation errors: Phi (F (1, 580) = .080; p = .777), Theta
(F (1, 580) = 2.556; p = .110) and Psi (F (1, 580) = .049; p = .825) between the
orientation correction algorithm using the gravity and magnetic North vectors
(GMV) and the correction using Kalman-based orientation filtering (KF). The
estimated marginal means plots of the orientation errors for the two algorithms
across 10 different hand poses in Figs. 5, 7 and 9 also show that the means of the
orientation errors for both algorithms are very similar across the 10 hand poses
in all three Euler angles. This result indicates that the proposed orientation cor-
rection algorithm (GMV) is capable of estimating the orientation of the human
as well as the traditional Kalman-based orientation filtering (KF). However, for
some hand poses, both algorithms produced large orientation errors. Large ori-
entation errors are present in Poses 6, 9 and 10 of the estimated marginal means
plot for Phi (Fig. 5); Poses 2 and 4 of the estimated marginal means plot for
Theta (Fig. 7); and Poses 8 and 9 of the estimated marginal means plot for Psi
(Fig. 9). Since both algorithms produced large orientation errors in these poses,
it raises the question whether the errors are possibly caused by the effect of the
hand poses.

The test for the effect of hand poses on the orientation errors in Table 3 shows
p-values smaller than .05 (p=.000 for all three Euler angles), indicating that dif-
ferent hand poses have a statistically significant effect on the orientation errors:
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Table 2. Marginal means and standard deviations of the orientation errors for each
hand pose

Dependent variable Pose N Mean (deg) Std. deviation

Phi 1 60 .335 .324

2 60 3.824 2.805

3 60 2.750 1.634

4 60 6.469 3.789

5 60 1.978 1.633

6 60 11.219 4.191

7 60 1.978 2.336

8 60 12.015 3.630

9 60 9.796 4.614

10 60 1.689 1.337

Theta 1 60 .317 .335

2 60 10.017 5.114

3 60 2.153 1.470

4 60 11.546 4.926

5 60 2.806 2.387

6 60 4.266 2.587

7 60 2.493 1.816

8 60 3.669 2.719

9 60 4.108 2.734

10 60 3.145 2.104

Psi 1 60 .493 .453

2 60 5.078 3.937

3 60 2.295 1.764

4 60 2.818 2.352

5 60 1.892 1.511

6 60 4.935 3.747

7 60 2.549 2.118

8 60 10.901 5.266

9 60 14.759 3.521

10 60 2.545 2.101

Phi (F (9, 580) = 129.555; p = .000), Theta(F (9, 580) = 85.109; p = .000) and
Psi (F (9, 580) = 134.474; p = .000). The result provides a strong indication that
hand poses affect the orientation errors for all three Euler angles. This can be inter-
preted that both algorithms could possibly produced less orientation errors. The
marginal means plots of the orientation errors in Phi for 10 different hand poses
across the two algorithms in Fig. 6 shows three plots (Poses 6, 8 and 9) with large
orientation errors corresponding to the large errors observed in Fig. 5.
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Table 3. Result of two-way multivariate analysis of variance (two-way MANOVA) test
for the effects of orientation correction algorithms and hand poses on the mean of the
orientation errors

Source df Dependent variable Mean square F statistic Sig

Algorithm 1 Phi .700 .080 .777

Theta 22.560 2.556 .110

Psi .447 .049 .825

Pose 9 Phi 1133.721 129.555 .000

Theta 751.284 85.109 .000

Psi 1225.674 134.474 .000

Algorithm*Pose 9 Phi 5.984 .684 .724

Theta 3.384 .383 .943

Psi .579 .064 1.000

Error 580 Phi 8.751

Theta 8.827

Psi 9.115
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Fig. 5. Estimated marginal means of the orientation errors (Phi) for each algorithm.
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Fig. 6. Estimated marginal means of the orientation errors (Phi) for each hand pose.
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Fig. 7. Estimated marginal means of the orientation errors (Theta) for each algorithm.
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Fig. 8. Estimated marginal means of the orientation errors (Theta) for each hand pose.
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Fig. 9. Estimated marginal means of the orientation errors (Psi) for each algorithm.
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Fig. 10. Estimated marginal means of the orientation errors (Psi) for each hand pose.

The marginal means plots of the orientation errors in Theta for 10 different
hand poses across the two algorithms in Fig. 8 also shows two plots (Poses 2 and
4) with large orientation errors that correspond to the large errors observed in
Fig. 7. Similarly, the marginal means plots of the orientation errors in Psi for 10
different hand poses across the two algorithms in Fig. 10 has two plots (Poses 8
and 9) with large orientation errors corresponding to the large errors observed in
Fig. 9. The test for the interaction between the type of algorithm and hand poses
(row Algorithm*Pose) in Table 3 shows that there is no statistically significant
interaction effect on the orientation errors: Phi (F (9, 580) = .684; p = .724),
Theta(F (9, 580) = .383; p = .943) and Psi (F (9, 580) = .064; p = 1.000). This
means that the effect of algorithms is consistent across the different hand poses.
Equivalently, the effect of the different hand poses on the orientation errors is
consistent for both algorithms.

We speculate that large orientation errors recorded for some specific poses
could be possibly caused by using the orientation of the instructed hand poses
as the ground truth to calculate the orientation errors. Perhaps the algorithms
estimated the actual orientation of the hand which might have been different
from the orientation of the instructed hand poses. It is possible that these large
errors could have been caused by the difficulties of the test subjects in trying to
match the instructed hand orientations, particularly for poses that are unnatural
and difficult to achieve. In the sequence of the hand movements (Fig. 4), the test
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subjects were asked to rotate their hands into 45-degree orientation for poses
8 and 9, and had to align their hands in parallel with the plane of the guiding
frame for poses 4 and 6. In these difficult poses, the orientation errors can become
large in one or more Euler angles. In the future, we will seek to test the glove
with a position-measurement system that might have higher, controlled accuracy
(e.g., laser-based) to use its measurements as the effective “ground truth” for
each hand pose. THis might remove the uncertainty we faced in this experiment
about the cause of larger errors yielded (by both orientation estimation methods)
for some specific poses.

5 Conclusion

Thirty human subjects participated in the evaluation of novel and traditional
orientation correction algorithms for an IMU-instrumented glove. Each subject
was asked to move his/her hand to match the instructed hand poses. The ori-
entation correction algorithm using the gravity and magnetic North vectors was
implemented to determine the orientation estimates. The orientation errors in
the form of Euler angles (Phi, Theta and Psi) were calculated as the departures
from the orientation of the instructed hand poses. The orientation errors are
compared with those of the correction using Kalman-based orientation filtering.
The statistical analyses show that there is no statistically significant difference
in the means of the orientation errors in Phi, Theta and Psi between the orien-
tation correction algorithm using the gravity and magnetic North vectors and
the correction using Kalman-based orientation filtering. The test for the effect
of hand poses on the orientation errors indicates that different hand poses have
a statistically significant effect on the orientation errors in Phi, Theta, and Psi.
There is no statistically significant interaction effect on the orientation errors,
implying that the effect of the two algorithms is consistent across the differ-
ent hand poses. Even though the orientation errors for the novel and traditional
orientation correction algorithms are not significantly different, the proposed ori-
entation correction algorithm has one key advantage over the correction using
Kalman-based orientation filtering: The proposed orientation correction algo-
rithm handles acceleration measurements and magnetometer measurements sep-
arately during the execution of the algorithm. This allows the control parameters
that define the weight for both measurements to be changed dynamically, which
gives flexibility in defining the final orientation estimate according to different
operational circumstances.
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