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Abstract— While visual search for targets within a complex 
scene might benefit from using augmented-reality (AR) head-
mounted display (HMD) technologies helping to efficiently direct 
human attention, imperfectly reliable automation support could 
manifest in occasional errors. The current study examined the 
effectiveness of different HMD cues that might support visual 
search performance and their respective consequences following 
automation errors. Fifty-six participants searched a 3D 
environment containing 48 objects in a room, in order to locate a 
target object that was viewed prior to each trial. They searched 
either unaided or assisted by one of three HMD types of cues: an 
arrow pointing to the target, a plan-view minimap highlighting 
the target, and a constantly visible icon depicting the appearance 
of the target object. The cue was incorrect on 17% of the trials 
for one group of participants and 100% correct for the second 
group. Through both analysis and modeling of both search speed 
and accuracy, the results indicated that the arrow and minimap 
cues depicting location information were more effective than the 
icon cue depicting visual appearance, both overall, and when the 
cue was correct. However, there was a tradeoff on the infrequent 
occasions when the cue erred. The most effective AR-based cue 
led to a greater automation bias, in which the cue was more often 
blindly followed without careful examination of the raw images. 
The results speak to the benefits of augmented reality and the 
need to examine potential costs when AR-conveyed information 
may be incorrect because of imperfectly reliable systems. 
 

Index Terms—Visual Search, Augmented Reality, Head-
Mounted Display, Visual Attention, Imperfect Automation  

I. INTRODUCTION 
ISUAL search is ubiquitous in the workplace and 
everyday life [1], [2]. Examples include a driver or 
pilot searching the forward view for potential 

collision hazards [03], the industrial worker or quality control 
inspector searching a product for flaws [4], [5], the radiologist 
searching medical imagery for a tumor or fracture [6], [7], the 
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TSA inspector searching the x-ray image for weapon [8], [9], 
[10], [11], [12], the computer user searching a cluttered screen 
for a specific file [13] or the warfighter searching a forward 
scene for a potentially hostile target [14], [15], [16] [17], [18]. 
When unaided, visual search can be time-consuming and 
error-prone, with a common issue being missing true targets 
when they are present [19]. This high human performance cost 
results because complex visual search is often serial, effortful, 
and inefficient, involving the inspection of each item in the 
search field in turn until one is encountered that is suspected to 
be the target [20], [21]. 

Challenges in both speed and accuracy mean there is great 
potential value to human performance of a search cue that can 
direct the searcher’s attention to that object [2], [18], [10]. An 
object might be cued based on an automation or AI inference 
that that particular object is likely to be a target. The current 
research addresses the intersection of human performance and 
computer technology in cued search in two respects: (1) we 
examine the technology of augmented reality cueing, and (2) 
we consider the imperfections of automation (e.g., machine 
vision) that may render the AI-based cueing imperfectly 
reliable. 

The specific contribution of this paper is that we 
demonstrate the differential effectiveness of three different 
types of head-mounted display (HMD) cueing aids in a 
comparison that has not been previously reported. Head-
mounted displays integrate small displays or projection 
technology into devices such as eyeglasses, visors, or devices 
that are mounted onto a helmet. One fundamental advantage 
of an HMD, specifically in the case where it displays 
augmented reality (AR) information (e.g., target cueing) is that 
they reduce the scanning between the display and the real-
world viewed through the display. This allows the system to 
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visually designate a suspected target while the searcher looks 
directly at the search field in the real-world beyond the 
display.  

We provide an underlying psychological model to account 
for the differences in effectiveness of the 3 cueing techniques. 
In particular, augmented reality head-mounted display (AR-
HMD) cueing based on imperfect automation has been rarely 
examined, and in our examination, we provide a unique 
comparison revealing that greater effectiveness of a more 
realistic world-centered cue when it is correct may be offset 
by greater cost on the infrequent occasions when it is wrong. 

II. BACKGROUND 

A. Perfect Cueing 
In theory, unaided search through a series of objects to find 

a target that is similar in appearance to the non-target objects 
will take, on average, a search time of: 
 

 𝑆𝑇 = 𝑎 + !"
#

 (1) 
 

where a is a constant associated with making the response 
when a target is located but, importantly, it also can involve a 
time-consuming target confirmation process; n is the number 
of non-target objects in the search field; and T is the time to 
inspect each object and determine that it is not a target. The 
division by 2 represents the fact that, on average, the target 
will be found after half of the objects have been inspected. 
This is the serial self-terminating search (SSTS) model [20] 
which has been confirmed in multiple experiments over the 
past 50 years (See [2] for review). There are multiple 
exceptions and qualifications to this pure serial search model 
[21], [22] but in many applied instances it provides a 
reasonable approximation to predicting ST [23]. 

Thus, a perfect cue may be able to drastically shorten this 
time from (𝑎 + 𝑛𝑇 2	* ) to (𝑎 + 𝑇), as the single cued object is 
inspected to confirm that it is the target. A study in our lab 
confirmed a reduction in search time for 3D objects located 
around a room from 10 to 5 seconds, associated with one type 
of perfect cueing [24]. Here we can calculate that 4.6 seconds 
represented the constant a in equation (1), with T = 0.33 
seconds. In hostile, or dynamic environments, saving a few 
seconds can be of vital importance.  Consider, for example, 
cueing the location of a potential collision hazard while 
driving fast or flying [25]. Such is an example of one of the 
many aspects of Wolfe’s [21], [22] guided search model, 
which can shorten search time, where the cue guides attention 
to a single candidate for a target. 

Naturally, the benefits of the cue in reducing search time 
will also be based on what we label the cue effectiveness 
value (CEV), which accounts for the time required to see and 
interpret the cue and orient attention from the cue to the cued 
target [2], [26], [27], [28], [29], an issue of direct interest in 
the current study. The CEV can be predicted and modeled by 
considering the human information processing operations 
involved in the search. One important influence on these 

operations is the extent to which the cue is considered 
exogenous or endogenous [2], [28]. An endogenous cue 
presents information about the cued location symbolically but 
does not appear at the location of the cue itself. For example, 
an icon cue conveys the appearance of a target but does not 
directly mark the location where attention should be shifted. 
Conversely, an exogenous cue orients the user to the location 
where attention should be shifted, such as a flashing highlight 
(presented on an HMD) near an object in the world that 
automatically orients attention towards the location of a target 
in the search scene.  

Basic visual attention research reveals that reliable 
exogenous (egocentric) cueing is more rapidly processed 
(greater CEV, smaller CEV penalty) than endogenous cueing. 
However, while the endogenous-exogenous distinction is 
widely used in basic research on visual attention, exogenous 
cues are only effective if the target is in the forward eye field 
and runs the risk of capturing attention when people are not 
currently searching for that specific target. In the current 
research, we, therefore, have employed the more application-
relevant terms of world-referenced (egocentric) versus 
display-referenced (exocentric) cueing, because this maps 
directly onto two philosophies of HMD cueing, the focus of 
our investigation.  

In HMD design, world-referenced cueing capitalizes on the 
properties of augmented reality, to position and re-position a 
cue on an HMD such that it always overlays or points directly 
toward the target, irrespective of how the head is oriented. 
That is, the cue is presented on the display in world-referenced 
coordinates that are rapidly updated on the display as the head 
rotates laterally or vertically. This is one of the cue types to be 
evaluated in the current study, in which an AR arrow cue is 
programmed to always point toward the location of the target. 

Screen-referenced exocentric or display-referenced cues are 
presented at the same fixed screen coordinates independent of 
head rotation.  They can nevertheless designate in some less 
direct fashion that object that automation infers to be the 
target, either by specifying its location or its visual 
appearance. In our research, a location cue highlights the 
inferred target as depicted on a minimap, positioned in screen-
referenced coordinates on the HMD [30], [24]. The visual 
appearance cue, which we call the icon cue, presents a picture 
(icon) of the inferred target, continuously visually available, 
again presented at fixed screen-referenced coordinates. Both 
of these cue types impose CEV penalties compared to the AR 
world-referenced arrow cue, but the penalties are of different 
varieties. For the minimap cue, the penalty is one of the spatial 
frame-of-reference transformations necessary to determine 
where the cued target viewed on the minimap (typically a top-
down planar display) is located on the forward ego-referenced 
3D view of the search field [31], [32]. For the icon cue, the 
penalty is inherent in the increase in N because of the many of 
the objects in the search field that still need to be sequentially 
examined to determine which one matches the icon. However, 
some shortening of search time is still preserved here to the 
extent that salient features of the target icon (e.g., a green 
color or large size), can discriminate it from many, although 
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not all, of the non-target objects in the search field. That is, 
some salient property of the target on any particular trial may 
help guide the search through a reduced number of items [21], 
[22]. 

In summary, in comparing the three cue types, their search 
time, and hence benefit over the control condition (equation 
1), is predicted to be: 
  
 𝐴𝑅	𝐴𝑟𝑟𝑜𝑤: (𝑎 + 𝑇	) (2) 

 
Here there is only a single item to be searched for and a 

single confirmation. Because the cue unambiguously points to 
the inferred target, CEV is maximum (i.e., having no penalty). 
 

𝑀𝑖𝑛𝑖𝑚𝑎𝑝: (𝑎 + 𝑇) + (𝐹𝑂𝑅𝑇	𝐶𝐸𝑉	𝑝𝑒𝑛𝑎𝑙𝑡𝑦) (3) 
 

This is identical to the predicted search time for the arrow 
cue, except there is now a penalty to the CEV related to the 
frame of reference transformation (FORT) of mental rotation 
from the top-down plan-view minimap to the forward 3D 
perspective view of the search field.  
 

𝐼𝑐𝑜𝑛: 𝑎$ + ((!&')")
#

  (4) 
 
The icon cue differs from the arrow cue in two ways. First, 

as noted above, relative to the control condition, search time 
may be reduced if certain salient features of some targets may 
reduce the search field from n by a quantity x, as predicted by 
the guided search model [21]. Second, as noted in the context 
of the uncued search (equation 1), in all of the equations the 
constant a actually contains two subcomponents. One is the 
time to actually execute the target identification response, 
which is identical for all four conditions. The other, non-trivial 
component is the time required to confirm that an initially 
identified candidate is actually the target. This will involve, as 
participants are requested to do, a close comparison between 
the candidate target seen in the real world through the HMD 
and the representation of the target, either visually on the 
HMD (the icon) or in visual memory (the minimap or arrow). 
This confirmation time is likely to differ between the arrow 
and minimap on the one hand (a), and the icon (a’) on the 
other hand. This difference results because, for the two 
location cues, the comparison must be made with a degraded 
remembered image, due to the passage of time, of the true 
target; whereas for the icon, the image remains directly 
visible, and so invites a careful comparison of the features of 
the image with that of the suspected target in the real world. 
This may take more time, even if it also improves accuracy. 
While the current experiment does not contain the necessary 
controls to obtain precise estimates of all these terms, it is 
possible to gauge rough estimates. 

Importantly, in an experiment examining these three types 
of cues [24], results showed cueing benefits of 5, 4, and 1, 
seconds for the arrow, minimap, and icon cues, respectively, 
indicating that the CEV of location cueing (i.e., the arrow and 
the minimap) was far more effective than that of visual 

appearance (i.e., the icon). However, the icon cue can also 
provide a benefit to search accuracy not conferred by the other 
types of cues: that is, the icon cue allows the searcher the 
capability to confirm with certainty the identity of the target, 
rather than relying upon the potentially degraded memory of 
what the target looked like. Thus, Warden and colleagues [24] 
found that the accuracy CEV was just as great (statistically) 
for the icon cue as for the arrow or minimap cue. 

B. Imperfect Cueing and Automation  
In [24], the cues were always correct. But in the operational 

world, a cue must be guided by an automation inference as to 
what should be the target. Such inference might often be 
guided by computer vision using machine-learning that 
examines each object and, like the human, compares the 
product of this examination with a template of what a true 
target looks like. As with so many other functions of 
automation, this inference may, on occasion, be incorrect [33], 
[34], [35], [36], [37], [10] due to various factors such as 
lighting conditions, pattern complexity in the search scene, 
and the reliability of the automation machine-vision system. 
Such imperfectly reliable automation also has profound 
implications for the performance of the human-automation 
team, depending upon the degree of dependence or reliance of 
the human on the automation’s decision/diagnosis of what is 
deemed important to be attended. Indeed, decades of research 
on human trust in imperfect automation have examined these 
factors [38], [34], [35], [39]. A smaller number of studies have 
examined it specifically in the context of visual search and 
target cueing (e.g., [15], [30], [36], [37], [8], [10]. However, 
only one study [15] appears to have done so in the specific 
context of AR-HMD target cueing; (although see also [30] for 
a closely related study).  

Three general findings have emerged from the above 
research on human use of imperfect automation. First, there is 
a general tendency for humans to depend upon automation 
recommendation, whether this recommendation is of a course 
of action, a location to attend to, or a diagnostic state, without 
adequately examining the raw data upon which that 
recommendation is based [40]. This dependency is known as 
the automation bias [41], [42], and has the consequence that, 
on instances when automation fails, which occur with a 
frequency of (1.0 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦), humans are also likely to err 
in their automation-based judgment. In visual search tasks, 
such automation failures may be either failing to find a true 
target (automation miss) or falsely classifying a non-target as a 
target (automation false alarm). Somewhat ironically, these 
failures become more likely, the more reliable automation is 
[43] (but see [10]), as humans may sometimes express what is 
called a “perfect automation schema” which is associated with 
high expectations of automation performance and less 
forgiving attitudes of automation failures than human failures 
[44], [45]. 

Secondly, as the reliability of automation does decrease, 
users are somewhat sensitive to this decrease (although more 
so to automation false alarms than misses [46]); their trust in 
automation is reduced and their dependence on automation is 
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correspondingly reduced. Consequently, the extent of the 
automation bias is also reduced. Unlike the previous HMD 
cueing type comparison [24], the present study included 
imperfect automation cueing, at an error rate of 17%, a value 
that may indeed be typical of many automation systems in use 
[47], but a level of imperfect reliability that is nevertheless 
helpful in aiding the human-automation team performance 
[48]. 

Third, there is some evidence that the effect of cue 
imperfections may interact with the type of cue employed, 
specifically that the more realistic “compelling” AR arrow 
cue, while providing greater assistance when it is correct, may 
lead to greater human errors caused by the automation bias on 
the infrequent occasions when the cue is wrong. Some basis 
for this prediction is provided by the research examining 
imperfect AR target cueing [15]. In this study, the authors 
employed an imperfect (85% reliable) cue of a potential 
hostile enemy target to soldier participants either with a head-
down hand-held display to signal possible target location or 
with an AR-HMD ego-centric arrow cue. They observed that 
the latter was more effective when the cue was correct, but 
more problematic when the cue was wrong providing a false 
alarm (i.e., cueing a non-target). It was as if the more 
immersive world-referenced cue amplified an automation bias.  

This tendency aligns with the idea that the more immersive 
cue produces more attentional tunneling [14], [49] at the 
expense of examining the raw data in the natural world 
beyond the HMD. In support of this causal assumption, [14], 
[15] also observed that the AR-HMD cueing led to a decrease 
in the detection of other non-cued but high priority threats in 
the scene. In the current study, we are predicting that all three 
automation cues will create some degree of automation bias, 
but that this will be amplified with the arrow cue, under the 
assumption that the more compelling immersive and easy-to-
use display (mitigating frame of reference transformations) 
will amplify dependence on that cue. 

This prediction is also consistent with a meta-analysis of the 
aircraft HUD [50] which revealed that the HUD provided 
benefits in particular when HUD information was conformal 
(i.e., a one-to-one mapping between a spatial overlay of a real 
or virtual object and the far domain) with the world beyond – 
a concept that is in many ways analogous to augmented reality 
displays. But that conformal HUD provided a unique cost to 
detecting events in the world beyond that were not depicted on 
the HUD; a form of automation failure. A military study, [51] 
found that the more immersive and realistic 3D display, as 
with the AR-HMD used by [24], improved performance on 
tasks depending on information in the current field of view; 
but [14] and [51] found that this immersive 3D display created 
a sort of attentional tunneling, which degraded detection of 
events outside of that forward view. Misfud and colleagues 
[30] found that errors in a directional cue presented within an 
AR-HMD were frequently undetected by the human 
participants. Again, this is as if this human performance bias 
was amplified by augmented reality (See also [52]). Neither of 
these studies nor the prior HUD meta-analysis, directly 
replicate the manipulations or displays used in the current 

study; but they do point toward certain predicted findings 
regarding the potential costs of high display realism [52] 
served by imperfect information. 

C. Cue Location and Search Strategy  
In addition to the effectiveness of cue type, a second issue 

examined in the current study is the effect of cue location 
within the visual field. Of course, the fundamental premise of 
using an HMD for attentional cueing in the first place is to 
reduce the information access effort required to move 
attention between the far domain and the displayed cue 
location [53]. While a head-down display, such as a tablet, 
was not employed for comparison in the current study (see for 
example [14]), our study did include a manipulation of cue 
location within the HMD. We hypothesized a benefit for 
placing the cue directly in the center of the HMD field of view 
(FOV) compared to positioning it at the bottom because of the 
reduced information access effort at the former location, as 
observed in our perfect cueing study [24]. However, we also 
recognize that any such advantage could be partially or fully 
offset by two factors:  

 
(1) The increased clutter that results when a screen-

referenced cue (icon or minimap) is directly 
superimposed on the foveal view of the outside world 
where all search objects can be seen when the 
direction of gaze is straight ahead. This offset is 
expected to grow as the visual complexity of the cue 
increases, and hence be larger with the more visually 
complex minimap, a finding observed in the perfect 
cueing study [24].  

(2) The particular search strategy employed. A strategy 
that proceeds from the top-down, will likely produce 
a relatively greater clutter-induced compromise of 
target detection in the lower search field when the 
cue is presented downward. Performance using a 
strategy that proceeds from the center-outward on the 
other hand will be little affected by vertical cue 
location. We have a particular interest in the basic 
search strategy employed in this paradigm in the 
control condition, when there is no cue present.  

 
Thus, the current experiment examines search for 3D target 

objects in a room, similar to that employed by [24] where 
participants were either unaided or assisted by an HMD cue of 
either of the three types described above. For half the 
participants, the cueing was imperfect where on 17% of the 
trials an object was cued that was not the target that they had 
studied prior to the start of the search. Based upon our review 
of the literature above, we hypothesized that: 

 
H1: Any cueing would provide a CEV benefit to search time 
as measured by response time (RT) relative to the control 
condition, given the long history of human factors research 
on cueing effectiveness. 

 
H2: This RT benefit would be maximum for the AR arrow 
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cue [24], reduced for the minimap cue because of its spatial 
transformation requirement that reduces CEV, and least for 
the icon cue which relied upon visual appearance rather than 
location information and forces some degree of time-
consuming serial search, as described above. This is based 
upon both the prior findings of [24] and the information 
processing analysis of each different cue type described 
above in equations (2), (3) and (4). 

 
H3: Cueing would provide a CEV benefit for accuracy 
relative to the control condition with no cue; based on the 
history of cueing research (See [24]). 

 
H4: The profile of accuracy benefits across cue type would 
differ from that shown by RT, because of the improved 
accuracy CEV for the icon cue, which allows memory-free 
confirmation of the cued target. This hypothesis is based on 
the known frailties of human working memory when a 
current image must be compared against a remembered 
image, which is the case with both the arrow and minimap 
cue. 

 
H5: Imperfect cueing automation would impair overall 
search performance because of the contribution of high error 
human rate on those 17% of the trials when the cue was 
wrong [15]. This is based on the large data base of research 
on the effects of automation imperfection on human-
automation team performance. 

 
H6: This impairment would be proportional to the benefit 
offered when the cue was correct This is based on the 
corresponding finding of the other AR-HMD cueing study 
available in the literature [15], [30]. 

 
H7: The location of the cue in the center of the HMD FOV 
rather than downward would generally improve cueing 
effectiveness because of reduced information access effort, 
particularly for the visually simple arrow cue. Ample 
experimental evidence, reviewed in [53] predicts some 
reduction in performance when two sources of information 
that need to be integrated are displayed further apart. 

III. EXPERIMENT 

A. Method 
 Participants. A total of 57 participants in an introductory 
psychology course at Colorado State University received 
course credit in exchange for completing the experiment. The 
experiment was approved by the Institutional Review Board. 
Requirements to participate were that they should not be color 
blind. Before starting the experiment, participants gave their 
informed consent and completed an online version of the 
Ishihara color blindness test to rule out any unknown red-
green deficiencies. Previous work indicates that online 
colorblindness tests are valid measures for screening for 
general color deficiencies [54], [55]. All participants had 
normal or corrected-to-normal vision, and all passed the 
electronic color-blind test.   

 Apparatus and Stimuli. Participants completed the 
experiment using a HoloLens 2, an AR-HMD. The HoloLens 
2 is an AR optical see-through headset that overlays virtual 
content onto the real world. The field of view (FOV) of the 
device is 43° in the lateral direction and 29° in the vertical 
direction. The cueing aids used during the visual search task 
were created in Unity, version 2019.3.1f1. We systematically 
constructed 48 real-world objects using multicolored Mega 
Blocks. Each object consisted of five blocks pointing in the ± 
x, ± y, and + z planes and varying in color and shape. In 
addition, we created 8 objects that were not in the search scene 
but were similar to 8 objects in the search scene (foils). These 
foil objects differed from their real-world counterpart in two 
dimensions (e.g., color and shape). These foil objects were 
used for the imperfect reliable condition only.  
 Task. Participants completed a 180-degree visual search task 
using an AR-HMD. Participants were seated in a stationary 
chair surrounded in front by the search field (Figure 1) within 
which they were to search for a designated target on each trial. 
In all conditions, the HMD displayed an image of the target 
object to be searched at the beginning of each trial. 
Participants had a total of 5 seconds to study the image until 
the search began. Once the trial began, they scanned the 
search field for the designated object. Once they felt that they 
had located the target, they fixated directly on the object. A 
gaze-sensitive algorithm then rendered a box around the 
target. To make their selection, they pressed the ‘A’ button on 
an X-Box controller. If the item they selected was the correct 
item (e.g., the target image at the beginning of the trial 
matched the object selected in the real world), the response 
was recorded correct. Otherwise, the response was recorded as 
incorrect. For the imperfectly reliable condition, participants 
could select the practice block if they believed the target 
object at the beginning was not present. This was recorded as 
correct.  

 
Figure 1. An image of the search scene depicted here from a 
top-down perspective (top) and a forward-facing perspective 
(bottom). Objects were placed three heights (shelf, table, 
floor) within a 180-degree search field. 
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Participants completed four cueing conditions during the 

experiment. As shown in Figure 2, participants were given 
three types of cueing aids: an arrow cue, minimap cue, icon 
cue. In addition, they completed a no cue (control) condition. 
The arrow cue was a green 2D AR world-reference arrow that 
pointed in the direction of the target as the participant turned 
their head. The arrow cue turned into a green circle once the 
participants' gaze was on the designated target (see left panel 
of Figure 2). The minimap cue used screen-referenced 
coordinates that continuously displayed the position of all 
objects in the search scene from a top-down bird's eye 
perspective. The target object's location was indicated with a 
yellow box around the object, as can be seen in the center 
panel of Figure 2. The icon cue continuously displayed the 
visual appearance of the target object in screen-referenced 
coordinates on the HMD, which can be seen in the black box 
to the lower left of the right panel in Figure 2. Note that the 
general similarity of the cued target icon with various search 
objects (3 of which are seen on the ledge above) requires 
careful comparison to judge which search object matches the 
icon.  

 
Figure 2. Example images of each cue with the hit boxes 
surrounding the object. Hit boxes denote when the participants 
gaze was on that specific object.  
 

Cues were positioned in either the center or 12.6 degrees 
downward from the center of the AR-HMD display: this 
display location represents the cue-location variable in the 
experiment. As shown in Figure 1, the objects in the real 
world were distributed across the 180-degree search field, and 
located at three different height locations (floor, table, and 
shelf) that were separated by 28 inches in the vertical 
direction. A total of 48 objects were uniformly distributed 
across two halves of the room. The target object could appear 
at any location within this 3D array. 

Design. The experiment was a 2 (reliability) x 3 (cue 
condition) x 2 (cue location) x 3 (object vertical location) 
mixed-subjects design, with the reliability as the between-
subjects variable and cue type, cue location, and object 
location as the within-subjects variables. A 4th condition, no-
cue was included, but this did not include cue location as a 
variable.  

Participants were randomly assigned to one of the two 
reliability groups. One group of participants (N = 28) 
completed the 100% reliability condition for which the image 
of the target object always matched the object in the real world 
that the cueing aid located. In order to encourage participants 
not to rely totally on the cue, the instructions indicated that: 
“The cue is always correct. However, before selecting the 
object that is identified by the cue, you should try to assure 
that the selected object is, in fact, the same as the one that you 

saw at the beginning of the trial. If you do not see the object in 
the search field, you can select the blue practice object block 
to indicate “object not present.” 

The second group of participants (N = 28) completed the 
83% reliability condition for which the image of the target 
object occasionally did not match the real-world object that 
the cueing aid designated (i.e., the cueing aid located the 
incorrect object 17% of the time). On the incorrect trials, the 
cue instead designated the foil; that is, the object that was 
matched to look similar, but not identical, to the object shown 
at the beginning of the search. Such similarity captured the 
kind of error that a machine learning system might make. 
Participants in this condition were explicitly instructed that: 
“The cueing aids may NOT BE PERFECTLY RELIABLE, 
meaning you may not fully rely on them. If you do not see the 
object in the search field, you can select the blue practice 
object block to indicate ‘object not present’”. For the arrow 
and minimap cues, the spatial properties of the cue designated 
the object (foil) that looked like the originally viewed target. 
For the icon cue, the icon representation of the target object 
remained on the HMD, but, as with the two spatial cueing 
conditions, that object was not present in the search field, 
being replaced instead by the similarly looking object. 

Participants completed 12 trials for each cue condition in a 
blocked, counterbalanced order; six trials when the cue was 
located in the center of the display and six trials when the cue 
was located 12.6 degrees downward from the center. These 
two cueing locations were blocked, and the cue conditions 
were counterbalanced. Participants completed 12 trials for the 
no cue (control) condition. The entire experiment consisted of 
48 trials. Four different sets of trials were randomly generated 
such that each cue type was presented at one of three heights 
on the left and right sides of the room. For example, on the left 
side of the room, three trials of the 2D arrow in the center 
location of the display would cue the participant to three 
objects located at the shelf, table, and floor heights, each at 
one of three regions in the lateral direction of the left side of 
the room (see Figure 1). Of the 8 incorrect target images (2 for 
each cue condition) each was paired with a real-world object 
that was similar but not identical. These were presented at the 
three vertical levels on the two sides of the room based on 
locations within the four different sets of trials described 
above. 
 Procedure. Participants completed seven practice trials to 
familiarize themselves with each cue condition. They 
completed two trials for each of the three cueing aids (arrow, 
minimap, and icon): one with the cue in the center of the 
display and one with the cue 12.6 degrees downward from the 
center. They completed only one practice trial for the no-cue 
condition. They searched for the same practice block 
consisting of only blue Mega Blocks for all practice trials. 
Next, they completed the test trials where they searched for 48 
different target objects for each cueing condition. After 
completing the visual search task, they took a Qualtrics survey 
to assess which cue they thought was the hardest, easiest, most 
helpful, and least helpful. We also collected demographic 
information (e.g., age, gender, AR/VR experience, etc.). 
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IV. RESULTS 
Outlier criteria were based on whether accuracy was at or 

below chance performance for all cueing conditions. Of the 57 
participants, one participant’s data was removed from the 
analysis. First, we analyzed the data in R using 3 (cue type) by 
2 (reliability level) X 2 (cue location) mixed ANOVAs to 
examine the effect of cue type (arrow, minimal, icon, and no 
cue), cue reliability level (100% and 83%) and location (up vs 
down) on performance. Cue type was submitted as the within-
subjects factor and reliability level as the between-subjects 
factor. We log-transformed response time data because the 
assumptions of normality and homogeneity were violated.  

A. Overall Cueing Effectiveness 
 Response Time. The effects of cue type and reliability level 
on response time (measured in seconds) are shown in Figure 3. 
To ease the interpretation, we plotted raw response time rather 
than the log-transformed response time. The single value of 
mean response time in the control (no cue) condition is plotted 
as the red dashed horizontal line, the red shaded region 
represents 1 standard error of the mean. 

 
Figure 3. Mean response time plotted as a function of cue 
type and reliability. Light blue dashed and green solid 
represent 83% and 100% reliability, respectively. Error bars 
represent the standard error of the mean. The horizontal 
dashed red line represents the mean response time for the no 
cue (control) condition. The shaded region indicates the 
standard error of the mean.  

 
To examine H1, the overall benefits of cueing to response 

time, separate planned comparisons were made between the no 
cue and the three cueing conditions. These revealed significant 
benefits of both the arrow cue (t(55) = -8.69, p < .001, d = 
1.45) and the minimap cue (t(55) = -5.66, p < .001, d = 0.87) 
with large effect sizes, but participants were actually slower 
than the uncued condition in finding the target with the icon 
cue (t(55) = 3.73, p = .0005, d = 0.44). Thus, H1 was 
supported in two of the three cases. 

To examine H2, specifically regarding the differences in cue 
effectiveness for response time, a 3 (cue type) by 2 
(reliability), the mixed ANOVA was carried out on the log-
transformed response time. The assumption of sphericity was 
violated, therefore Greenhousse-Geisser corrections for log-
transformed response time data are reported here. This 
ANOVA revealed a significant, large effect of cue type on 
log-transformed response time, F(1.52, 82.13) = 105.89, p < 
.001, ηp2 =  0.66. As suggested by the similarity of the two 
curves in Figure 3, the reliability level did not impact log-
transformed response time, F(1, 54) = 0.05, p = .82, ηp2 < 0.1. 
The interaction was also not significant (p = .42). Specific 
contrasts revealed, as shown in Figure 3, that all three cueing 
conditions differed from each other, with the arrow supporting 
fastest performance, and the icon supporting slowest 
performance. As the figure suggests, the minimap was also 
much more effective than the icon (t(55) = 11.01, p < .001, d = 
1.40), although still significantly slower than the arrow cue 
(t(55) = -6.30, p < .001, d = 0.82). Thus, these results fully 
support the ordering of cueing effectiveness on search speed 
proposed in H2. 

Accuracy. Figure 4 presents the accuracy data in identical 
format to the response time data of Figure 3. In contrast to the 
response time data, these data indicate that all six cueing 
conditions, whether perfectly reliable or not, improved 
accuracy over the no cue (control) condition, supporting H3. 

The 3 (cue type) by 2 (reliability) mixed ANOVA 
conducted on the accuracy data revealed a significant effect of 
cue type, F(2, 108) = 4.83, p < .01, ηp2 =  0.08. In addition, 
there was a significant and large effect of reliability level on 
percent error, F(1, 54) = 27.51, p < .001, ηp2 = 0.34, discussed 
below. There was no significant interaction between cue type 
and reliability level, F(2, 108) = 0.24, p = .78, ηp2 < 0.01.  

The analysis revealed that, as with response time, the arrow 
cue was most effective in supporting accuracy. However, the 
ordering for the icon and minimap cue was reversed from that 
shown for response time, with the icon cue showing 
somewhat, although not significantly, greater accuracy than 
the minimap cue, (t(55) = 1.46, p = .15, d = 0.20). Thus, H4 is 
supported, replicating the general findings of [24]. 
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Figure 4. Mean accuracy plotted as a function of cue type and 
reliability. Green solid and light blue dashed represent 100% 
and 83% and reliability, respectively. Error bars represent the 
standard error of the mean. The dashed red line represents the 
mean accuracy for the no cue (control) condition. The shaded 
region indicates the standard error of the mean.  

B. The Automation Bias: Automation Error Trials 
The data addressing H5, the effects of imperfection were 

described in the two analyses above. In the analysis of RT, 
imperfection of cueing had no effect. In the analysis of 
accuracy, consistent with H5, it had a large effect, degrading 
accuracy across all cue types by approximately 13%. This 
degradation could result from either or both of two causes: (1) 
following the automation bias, participants blindly followed 
the cue, whether right or wrong, and hence, when it was 
wrong, suffered the corresponding increasing error rate; (2) 
participants, knowing that the cue could be wrong on any trial, 
relied less upon the automation, and more on their own 
imperfect performance level. Because when they were 
unaided, this performance level at 65% (see horizontal line of 
Figure 4) was less than with the cueing aids, such increased 
self-reliance would also pull the overall average performance 
downward.  

The data to examine the automation bias are presented in the 
speed-accuracy tradeoff space in Figure 5. In this, we have 
plotted the data for all three conditions of cue effectiveness 
when the cues were accurate and when they were wrong. Our 
statistical analysis is performed only on the two most different 
conditions in cueing effectiveness when the cue was correct, 
specifically the arrow and the icon cue. These two represent 
very different information processing mechanisms (see 
equations (2) and (4)). Inspection of the figure also reveals 
that performance with the two location cues, the arrow and 
minimap, respond almost identically to the failure.  

Each line in Figure 5 connects the three different cue types: 
green triangular arrows and blue circles toward the left, reflect 
a rapid RT and the square red icon toward the right reflecting 
their longer RT. Each data point represents the speed (RT) and 
accuracy of correct cueing (top) and wrong cueing (bottom). 

The larger standard error bars for the wrong-cueing trials 
result from the fact that their N was 1/6th the size of the N for 
correct automation. For comparison purposes, the unfilled 
circle represents the data from the no cue (control) condition. 

 
Figure 5. Performance in the speed-accuracy space. Mean 
response time (x-axis) by mean accuracy (y-axis) for the arrow 
(green triangle, solid line), minimap (blue circle, dotted line), 
and icon (red square, dashed line) cues when the cue was 
correct (top three data points) and incorrect (bottom three data 
points). The open circle represents the no cue (control) 
condition. Horizontal and vertical error bars represent the 
standard error of the mean for response time and accuracy, 
respectively. 
 

Within this speed-accuracy space, high cue effectiveness is 
represented in the upper left corner: short RT and high 
accuracy. The data when the cue is correct, show the pattern 
described above in Figures 3 and 4: the arrow cue is 
unambiguously more effective on both speed and accuracy 
variables. However, when the cue is wrong (lower data 
points), the pattern essentially reverses. There is a delay in all 
cue types, suggesting that participants are somewhat or 
sometimes aware of the cueing error (i.e., not always blindly 
following the cue, but sometimes just more hesitant in 
responding, which represents an increase in the constant a in 
equations 2-4). There is a large loss in accuracy for all three 
cue types suggesting an automation bias. Critically, however, 
this loss is much greater for the arrow cue, where accuracy 
drops from 89% to 13%, than it is for the icon cue, where 
accuracy drops from 80% to 43%. That is, participants 
correctly chose the blue box (target not present) on 57% of the 
trials. The significant difference in accuracy between the two 
cue types when the cue is wrong showed a large effect size, 
(t(27)) = 9.50, p < .001, d = 2.59), thereby supporting H6 It 
should be noted here that the positioning of the minimap cue 
in the speed-accuracy space when the cue is wrong is nearly 
identical to that of the arrow cue. 

Above, we described the two different kinds of human 
errors that could occur when the automation was wrong: the 
participant’s decision to use their fallible judgment, and the 
blind following of the automation (the automation bias). The 
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prevalence of the former can be estimated from the error rate 
in the control condition, which is approximately 30%. Hence, 
we can assume that of the 60% error rate in the icon condition 
half of these can be attributed to the automation bias errors, 
and for the two location cue conditions, the approximate 92% 
error rate can be predominately attributed to the automation 
bias errors. The reduced automation bias of the icon condition 
would appear to reflect the more thorough examination of the 
target object during the confirmation stage, and hence the 
longer RT delay as reflected by the constant a’ > a. 

C. Location Effects  
In addition to our primary interest in cue type and reliability, 

a secondary interest included the influence of cue location. 
Our prior research [24] indicated that performance was 
somewhat disrupted due to increased visual scanning between 
the object view and the cue view when the cue was positioned 
downward. In the current experiment, we were also interested 
in any possible interaction between cue location and the 
location of the target object in the wider visual field. The latter 
variable could provide us insight into the visual search 
strategies employed in unaided search and how they might be 
modified by the different cueing types. To conduct the 
analyses of both cue and target location effects, we separated 
target location by its vertical (shelf, table, floor; see Figure 1) 
and lateral positioning. Because the targets were continuously 
distributed in the lateral field, we coded lateral location into 
four categories: left versus right of initial fixation, and toward 
the center or the periphery. In this way we could discern one 
of two different search strategies often employed: left-to-right, 
and center-outward. We analyzed the three levels of vertical 
target positioning, separately from the four levels of lateral 
positioning, to ensure sufficient data in each. We also 
analyzed the uncued trials separately from the cued trials, only 
the latter analyses including the variable of cue location. 

The effects of both cue and target location were, for the 
most part, muted and non-significant. In particular, cue 
location (center or downward) showed no significant effects 
nor interactions with either RT or accuracy.  

The only prominent effects of vertical target location were 
for RT. Results showed faster RT for the top (Mshelf = 13.43 
seconds) and middle (Mtable= 13.65 seconds) locations than the 
bottom (Mfloor = 15.29 seconds), F(2, 110) = 9.45, p < .001, ηp2 
=  0.15, suggesting some combination of a top to bottom 
search strategy, and a middle (table) outward (to shelf or floor) 
strategy. This effect was also significant, but smaller in 
magnitude, and of the same pattern for uncued trials, F(2, 110) 
= 3.62, p = .03, ηp2 =  0.06. There was no consistent trend for 
lateral position in either cued or uncued trials. 

For accuracy (on the cued trials), there was an interaction 
between vertical location of targets and cue location, F(2, 110) 
= 5.06, p = .008, ηp2 =  0.08. For the floor objects, greatest 
accuracy occurred when the cue was presented downward 
(t(55) = 2.92, p = .005, d = 0.50), a benefit for downward 
cueing not conferred in other vertical target locations. The 
effect of lateral target location (on cued trials only) showed 
greater accuracy when the target was in the center, F(1, 55) = 
8.42 p = .005, ηp2 =  0.13. There were no consistent effects of 
lateral target position on accuracy for uncued trials. The 
absence of any main effect of cue location fails to confirm H7. 

V. DISCUSSION 

In this experiment, we have joined two HCI issues in the study 
of AR-HMD target cueing: the capability of HMD cueing to 
exploit properties of augmented reality to offer world-
referenced cues and the effects of imperfect reliability of 
automation-generated cues.  

A. Overall Cueing Effectiveness 
In a task requiring the integration of near domain (displayed 

cue) information and far domain (search field) information, we 
found AR cueing (i.e., the arrow) to provide a pronounced 10 
second benefit relative to uncued targets (H1). We also found a 
benefit for cues that were not presented in world-referenced 
augmented reality coordinates compared to uncued targets. 
Specifically, the minimap showed a 4 second benefit and the 
icon cue showed a 15 % accuracy benefit relative to no cue, 
confirming H2.  

The time benefit of AR arrow cueing over the minimap was 
small (2 seconds) but significant. Both techniques provided 
precise location cueing, thus eliminating the 𝑛𝑇 2*  from 
predictive Equations 2 and 3. However, the minimap cue 
imposed some added time cost due to the frame-of-reference 
transformation, when transforming a top-down 2D map to the 
forward 3D view of the search scene [31], [49]. This penalized 
the CEV by approximately 2 seconds (Equation 3). While no 
spatial transformation was required for the icon cue, its time 
penalty relative to the arrow cue was quite large, at 
approximately 15 seconds: a 200% increase.  

In the context of the serial self-terminating model of visual 
search discussed in the introduction [20] assume that, with the 
icon cue, each object is examined and compared with the icon 
cue in order to establish that it is not the target. This search 
strategy continues until a match is found, a comparison 
process of time T, that we estimate from the current data to be 
about 0.40 seconds. In the context of the equations presented 
in the introduction, this estimate assumes that, for the precise 
location cues, only one comparison is required (N = 1), 
whereas for the icon cue, on average, 48 2	* = 24	comparisons 
are required. (We note that in [24], the estimate of T was quite 
similar – approximately 0.33 seconds – to that observed here 
40 seconds). The much longer search time of the icon cue 
could be due to some combination of a longer confirmation 
time (a’ > a) and the need to inspect many more images: 
((𝑛 − 𝑥)𝑇)

2* .  The current data do not allow us to determine 
the precise value of CEV for the icon cue because we have no 
way to estimate “x”, the number of items that do not require 
inspection because of guided search [21]. 

While this model accounts for the differences in search time 
between the cueing conditions, and supports the advantage of 
location over identity cueing, the accuracy differences result 
from a different mechanism. In particular, the accuracy of the 
icon was now elevated to be highly similar to that of the 
minimap, and non-significantly greater. The reason for this 
equivalence is assumed to lie in the target confirmation 
process (a process reflected in the RT function by the intercept 
a or a’). For the icon, this confirmation is a direct visual 
comparison between the viewed target object and the icon. 
However, for the minimap, it is a comparison between the 
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visual image of the target, and the remembered image of the 
cue, which was viewed at the beginning of the trial. For the 
minimap, this time delay, averaging approximately 12 seconds 
(see Figure 3), is of sufficient magnitude such that it degrades 
the quality of the image in spatial working memory [56] and 
produces some loss to the accuracy of comparison. This loss 
for the minimap is greater than it is for the arrow cue simply 
because the minimap time-delay is about 3 seconds longer 
than that of the arrow (see Figure 3). That time difference is 
great enough to account for an accuracy decrement of the 
minimap relative to the arrow in the quality of the 
remembered target image. With a lower quality image, 
accuracy will be compromised. We note that in all cases, the 
accuracy is far below perfect. That is because the Mega Block 
targets were intentionally designed to be highly similar to 
many of the non-targets in their 3D shape and color 
combination (see Figure 2 right panel). This might represent, 
for example a vehicle with a certain differentiating feature 
(e.g., 1 foot longer) compared to many other non-target 
vehicles sharing many similar features to the target (e.g., 
shape, color, number of doors, etc.).  

Despite the pronounced advantage of location (arrow and 
minimap) over appearance (icon) cueing, it is possible to 
envision circumstances in which the advantage is reduced or 
even reversed. For example, in some circumstances initial 
location uncertainty may be quite small, as in searching a line-
up of only five (N = 5) suspects for a crime to identify the 
remembered target previously viewed at the crime scene; but 
there may be subtle differences in facial appearance of the true 
target and the non-targets, greatly impinging on accuracy, 
when there is no image for direct visual comparison. 

B. Imperfection of Cueing 
The second intersecting issue was the 17% imperfection of 

AI, which degraded overall human-automation team accuracy 
and CEV by 15% supporting H5. This effect of automation 
reliability has been well documented in much of the HAI 
research in general [57] as well as that specific to target search 
[15], [36], [37], [10]. These findings indicate that imperfection 
of a cue will almost always pull human-automation team 
performance downward relative to perfect cueing, as long as 
accuracy performance (reliability) of the human alone is less 
than that of the imperfect cue alone, as was the case in the 
present experiment (Figure 4).  But at the same time, 
imperfect reliability in automation will typically aid human 
performance accuracy above an unaided manual baseline, as is 
the case here ([36], [37, [47], see Figure 4).  In this context it 
is also important to note that even with the best cue of the 
perfect cueing condition the mean accuracy of 92% is still less 
than that had participants only followed the cue which was 
correct 100% of the time. Such a finding is not unexpected, 
given that other studies have observed that performance with 
highly reliable automation typically remains below that of 
automation itself ([36], [37], see [2] for a summary). 

Our more detailed examination of the data indicated that the 
consequence of cueing imperfection was not simply a blind 
adherence to the automation bias [41], [42]. If this had been 
the case, then the speed of responding would have been 
unaffected by whether the cue was or was not correct. But, as 
shown in Figure 5, speed was somewhat affected. The 

response was significantly slower on those occasions when the 
cue was wrong, even for the most effective cue (i.e., the 
arrow), which might have been predicted to show the greatest 
automation bias. We suspect that such hesitation may have 
been the result of increased overall caution with the participant 
knowing that cueing errors could occur, or the increase in 
confirmation time on those trials where doubt might have 
occurred in the participant’s mind. This would produce an 
increase in the search time (RT) constant a in equations (2) 
and (3), or a’ in equation (4) 

Nevertheless, strong evidence was provided for the presence 
of the automation bias in all cueing conditions. It is here that 
the two HAI issues, that of AR and automation imperfection, 
intersect. When location cueing is most intuitive (i.e., with the 
AR arrow) in world-referenced coordinates, it is most likely to 
be followed without using the raw data of the target object in 
the search scene, supporting H6. Mifsud and colleagues [30] 
also found this automation bias with a different form of AR 
target cueing, and [14] found it to be the case when comparing 
AR-HMD cueing with non-AR cueing. As described in the 
Introduction above, the more realistic the cue, and perhaps the 
more powerful the response it elicits the more likely it is to be 
followed when it is wrong: for example, in this case, pointing 
an arrow at a potential target that the user must then designate 
for the response. This can be seen as a specific manifestation 
of the more general “Lumberjack” tradeoff principle of 
human-automation interaction: the more effective automation 
is when it is correct, the greater the consequences to the 
human-automation team’s performance when it is wrong [39]. 
(That is, the higher the tree, the harder it falls). This leads us 
to consider two aspects of human-automation interaction. On 
the one hand, to consider mitigating solutions to over-
dependence on automation and AI when its information is 
rendered in AR. On the other hand, to consider the frequency 
and kind of errors committed by AI when it is based on actual 
machine vision operating in real-time under time-sensitive 
conditions of potentially hostile behavior detection or dynamic 
hazard avoidance [45].  

Our findings regarding location effects were muted. 
Differences in the location of the cue, center or downward on 
the HMD, had little effect on performance. Thus, the 
information access penalty of a small downward scan to see 
any of the cues was quite small, similar to findings in another 
context [53]. It may be the case that the downward position of 
the cue location (at 12.6 degrees) remained sufficiently within 
the eye-head field range to mitigate any cost of information 
access effort that we might otherwise see if the cues were out 
of the field-of-view of the HMD entirely (e.g., glanceable AR; 
[58]). Correspondingly, there was not the predicted interaction 
of cue location with target position that might have suggested 
a clutter effect. This clutter effect refers to the greatest 
performance decrement in two circumstances: (1) when the 
cue was in the center and the target on the table, and (2) when 
the cue was positioned downward, and the target was on the 
floor. This clutter effect was also muted, possibly because the 
minimap was a smaller size than the prior study [24], creating 
less overlay clutter. Alternatively, the performance penalties 
for increased clutter due to overlaying target and cue were 
offset by the benefits of reduced information access between 
target and cue location.  



11 
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS  

In this regard, the significant interaction observed between 
cue and target vertical location suggested that the lower targets 
were best served by the bottom cue location: close spatial 
proximity between cue and target fosters best performance. 
This finding is a prediction of the proximity compatibility 
principle [59], [53], which states that when two sources of 
information require integration, those sources should be 
placed closer together in space.   

VI. LIMITATIONS 
One limitation of the current research, in generalizing to cued 
search in the real world, is that the latter includes many cases 
in which the objects need not be compared with an image to 
be detected. For example, consider searching for a weapon in 
an X-ray image at airport security. The searcher has a well-
formed image in long term memory of what a “typical 
weapon” looks like. Yet the aforementioned example of search 
for a particular vehicle that may have a similar shape and color 
of other vehicles but differs in its length, or instances where 
specific targets may be less familiar and are not stored in long-
term memory, demonstrate cases more typical of that studied 
here where objects cannot be easily discriminated from foils.  

Another limitation is that the arrow, like any AR cue, could 
be subject to parallax errors. The magnitude of this effect may 
be quite dependent on the proximity between the target and 
adjacent items. If search items are close together, parallax 
errors could easily result in an arrow cue pointing to an 
adjacent item rather than the true target. In the current 
research, we assured sufficient spacing between search items 
that this did not occur; but it certainly remains a concern in 
other applications. 

Lastly, we did not use expert participants who engage in 
visual search tasks, such as those in a military combat role for 
which this paradigm might be highly relevant. We simply did 
not have a sufficient number of expert participants available to 
gain adequate statistical power. However, we note that in other 
AR-HMD studies, our subject matter experts have stated that a 
major concern of the JTAC is that of confusing a relevant 
from a non-relevant object on the ground when searching for 
the former. Therefore, we are of the firm belief that the current 
research addresses a highly relevant applied issue. 

VII. CONCLUSIONS AND FUTURE WORK 
Overall, we found that cues depicting location information, the 
arrow and minimap cues, led to faster and, in the case of the 
arrow cue, more accurate visual searches compared to the icon 
cue, which only depicted information about the appearance of 
a target. However, when imperfect cues were erroneous, the 
most effective cues for supporting search performance led to 
worse outcomes. This is indicative of an automation bias 
where people blindly follow the cue without sufficient, 
independent confirmation for themselves that the identified 
object is the correct target. These findings highlight an 
important prospective use case for AR support during visual 
search tasks, and also shed light on the costs associated with 
imperfectly reliable cueing aids. A tendency towards greater 
automation bias may be a critical drawback in some high-
stakes contexts. Such findings strongly imply that designers 
will need to take a system view of error management in 

supporting visual search rather than just optimizing 
performance under an assumption of perfectly reliable 
support. 

In the future, several experiments are warranted to explore 
the interaction between the two HMD automation issues. For 
example, different levels of automation reliability should be 
explored to assess if the augmented reality cost for the more 
realistic world-reference cue diminishes as cueing reliability 
also decreases. Also, the current findings when automation 
errors are scripted by the experiment should be extended to 
circumstances in which actual machine vision determines 
target cueing in real-time. Correspondingly, effort should be 
taken to systematically manipulate target versus non-target 
similarity, to establish if advantages to accuracy of the icon 
cue begin to emerge, particularly as the size of the search 
field, n, is reduced. Finally, more research should be 
conducted when the screen-referenced cue is further displaced 
from the search field, thereby increasing information access 
effort. 
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